
Jacqueline Kazil & Katharine Jarmul

 Data
Wrangling
with
Python
TIPS AND TOOLS TO MAKE YOUR LIFE EASIER

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Praise for Data Wrangling with Python

“This should be required reading for any new data scientist, data engineer or other
technical data professional. This hands-on, step-by-step guide is exactly what the field

needs and what I wish I had when I first starting manipulating data in Python. If you are a
data geek that likes to get their hands dirty and that needs a good definitive source, this is

your book.”
—Dr. Tyrone Grandison, CEO, Proficiency Labs Intl.

“There’s a lot more to data wrangling than just writing code, and this well-written book
tells you everything you need to know. This will be an invaluable step-by-step resource at

a time when journalism needs more data experts.”
—Randy Picht, Executive Director of the Donald W. Reynolds

Journalism Institute at the Missouri School of Journalism

“Few resources are as comprehensive and as approachable as this book. It not only
explains what you need to know, but why and how. Whether you are new to data

journalism, or looking to expand your capabilities, Katharine and Jacqueline’s book is a
must-have resource.”

—Joshua Hatch, Senior Editor, Data and Interactives,
The Chronicle of Higher Education and The Chronicle of Philanthropy

“A great survey course on everything—literally everything—that we do to tell stories with
data, covering the basics and the state of the art. Highly recommended.”

—Brian Boyer, Visuals Editor, NPR

www.it-ebooks.info

http://www.it-ebooks.info/

“Data Wrangling with Python is a practical, approachable guide to learning some of the
most common tasks you’ll ever have to do with code: find, extract, tidy and examine

data.”
—Chrys Wu, technologist

“This book is a useful response to a question I often get from journalists: ‘I’m pretty good
using spreadsheets, but what should I learn next?’ Although not aimed solely at a

journalism readership, Data Wrangling with Python provides a clear path for anyone who
is using spreadsheets and wondering how to improve her skills to obtain, clean, and

analyze data. It covers everything from how to load and examine text files to automated
screen-scraping to new command-line tools for performing data analysis and visualizing

the results.
“I followed a well-worn path to analyzing data and finding meaning in it: I started with

spreadsheets, followed by relational databases and mapping programs. They are still
useful tools, but they don’t take full advantage of automation, which enables users to

process more data and to replicate their work. Nor do they connect seamlessly to the wide
range of data available on the Internet. Next to these pillars we need to add another: a

programming language. While I’ve been working with Python and other languages for a
while now, that use has been haphazard rather than methodical.

“Both the case for working with data and the sophistication of tools has advanced during
the past 20 years, which makes it more important to think about a common set of

techniques. The increased availability of data (both structured and unstructured) and the
sheer volume of it that can be stored and analyzed has changed the possibilities for data

analysis: many difficult questions are now easier to answer, and some previously
impossible ones are within reach. We need a glue that helps to tie together the various
parts of the data ecosystem, from JSON APIs to filtering and cleaning data to creating

charts to help tell a story.
“In this book, that glue is Python and its robust suite of tools and libraries for working

with data. If you’ve been feeling like spreadsheets (and even relational databases) aren’t up
to answering the kinds of questions you’d like to ask, or if you’re ready to grow beyond

these tools, this is a book for you. I know I’ve been waiting for it.”
—Derek Willis, News Applications Developer at ProPublica and

Cofounder of OpenElections

www.it-ebooks.info

http://www.it-ebooks.info/

Jacqueline Kazil and Katharine Jarmul

Boston

Data Wrangling with Python

www.it-ebooks.info

http://www.it-ebooks.info/

978-1-4919-4881-1

[LSI]

Data Wrangling with Python
by Jacqueline Kazil and Katharine Jarmul

Copyright © 2016 Jacqueline Kazil and Kjamistan, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Meghan Blanchette
Editor: Dawn Schanafelt
Production Editor: Matthew Hacker
Copyeditor: Rachel Head
Proofreader: Jasmine Kwityn

Indexer: WordCo Indexing Services, Inc.
Interior Designer: David Futato
Cover Designer: Randy Comer
Illustrator: Rebecca Demarest

February 2016: First Edition

Revision History for the First Edition
2016-02-02 First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491948811 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Data Wrangling with Python, the cover
image of a blue-lipped tree lizard, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

www.it-ebooks.info

http://safaribooksonline.com
http://oreilly.com/catalog/errata.csp?isbn=9781491948811
http://www.it-ebooks.info/

Table of Contents

Preface. xi

1. Introduction to Python. 1
Why Python 4
Getting Started with Python 5

Which Python Version 6
Setting Up Python on Your Machine 7
Test Driving Python 11
Install pip 14
Install a Code Editor 15
Optional: Install IPython 16

Summary 16

2. Python Basics. 17
Basic Data Types 18

Strings 18
Integers and Floats 19

Data Containers 23
Variables 23
Lists 25
Dictionaries 27

What Can the Various Data Types Do? 28
String Methods: Things Strings Can Do 30
Numerical Methods: Things Numbers Can Do 31
List Methods: Things Lists Can Do 32
Dictionary Methods: Things Dictionaries Can Do 33

Helpful Tools: type, dir, and help 34
type 34

v

www.it-ebooks.info

http://www.it-ebooks.info/

dir 35
help 37

Putting It All Together 38
What Does It All Mean? 38
Summary 40

3. Data Meant to Be Read by Machines. 43
CSV Data 44

How to Import CSV Data 46
Saving the Code to a File; Running from Command Line 49

JSON Data 52
How to Import JSON Data 53

XML Data 55
How to Import XML Data 57

Summary 70

4. Working with Excel Files. 73
Installing Python Packages 73
Parsing Excel Files 75
Getting Started with Parsing 75
Summary 89

5. PDFs and Problem Solving in Python. 91
Avoid Using PDFs! 91
Programmatic Approaches to PDF Parsing 92

Opening and Reading Using slate 94
Converting PDF to Text 96

Parsing PDFs Using pdfminer 97
Learning How to Solve Problems 115

Exercise: Use Table Extraction, Try a Different Library 116
Exercise: Clean the Data Manually 121
Exercise: Try Another Tool 121

Uncommon File Types 124
Summary 124

6. Acquiring and Storing Data. 127
Not All Data Is Created Equal 128
Fact Checking 128
Readability, Cleanliness, and Longevity 129
Where to Find Data 130

Using a Telephone 130
US Government Data 132

vi | Table of Contents

www.it-ebooks.info

http://www.it-ebooks.info/

Government and Civic Open Data Worldwide 133
Organization and Non-Government Organization (NGO) Data 135
Education and University Data 135
Medical and Scientific Data 136
Crowdsourced Data and APIs 136

Case Studies: Example Data Investigation 137
Ebola Crisis 138
Train Safety 138
Football Salaries 139
Child Labor 139

Storing Your Data: When, Why, and How? 140
Databases: A Brief Introduction 141

Relational Databases: MySQL and PostgreSQL 141
Non-Relational Databases: NoSQL 144
Setting Up Your Local Database with Python 145

When to Use a Simple File 146
Cloud-Storage and Python 147
Local Storage and Python 147

Alternative Data Storage 147
Summary 148

7. Data Cleanup: Investigation, Matching, and Formatting. 149
Why Clean Data? 149
Data Cleanup Basics 150

Identifying Values for Data Cleanup 151
Formatting Data 162
Finding Outliers and Bad Data 167
Finding Duplicates 173
Fuzzy Matching 177
RegEx Matching 181
What to Do with Duplicate Records 186

Summary 187

8. Data Cleanup: Standardizing and Scripting. 191
Normalizing and Standardizing Your Data 191
Saving Your Data 192
Determining What Data Cleanup Is Right for Your Project 195
Scripting Your Cleanup 196
Testing with New Data 212
Summary 214

Table of Contents | vii

www.it-ebooks.info

http://www.it-ebooks.info/

9. Data Exploration and Analysis. 215
Exploring Your Data 216

Importing Data 216
Exploring Table Functions 223
Joining Numerous Datasets 227
Identifying Correlations 232
Identifying Outliers 233
Creating Groupings 235
Further Exploration 240

Analyzing Your Data 241
Separating and Focusing Your Data 242
What Is Your Data Saying? 244
Drawing Conclusions 244
Documenting Your Conclusions 245

Summary 245

10. Presenting Your Data. 247
Avoiding Storytelling Pitfalls 247

How Will You Tell the Story? 248
Know Your Audience 248

Visualizing Your Data 250
Charts 250
Time-Related Data 257
Maps 258
Interactives 262
Words 263
Images, Video, and Illustrations 263

Presentation Tools 264
Publishing Your Data 264

Using Available Sites 265
Open Source Platforms: Starting a New Site 266
Jupyter (Formerly Known as IPython Notebooks) 268

Summary 272

11. Web Scraping: Acquiring and Storing Data from the Web. 275
What to Scrape and How 276
Analyzing a Web Page 278

Inspection: Markup Structure 278
Network/Timeline: How the Page Loads 286
Console: Interacting with JavaScript 289
In-Depth Analysis of a Page 293

Getting Pages: How to Request on the Internet 294

viii | Table of Contents

www.it-ebooks.info

http://www.it-ebooks.info/

Reading a Web Page with Beautiful Soup 296
Reading a Web Page with LXML 300

A Case for XPath 304
Summary 311

12. Advanced Web Scraping: Screen Scrapers and Spiders. 313
Browser-Based Parsing 313

Screen Reading with Selenium 314
Screen Reading with Ghost.Py 325

Spidering the Web 331
Building a Spider with Scrapy 332
Crawling Whole Websites with Scrapy 341

Networks: How the Internet Works and Why It’s Breaking Your Script 351
The Changing Web (or Why Your Script Broke) 354
A (Few) Word(s) of Caution 354
Summary 355

13. APIs. 357
API Features 358

REST Versus Streaming APIs 358
Rate Limits 358
Tiered Data Volumes 359
API Keys and Tokens 360

A Simple Data Pull from Twitter’s REST API 362
Advanced Data Collection from Twitter’s REST API 364
Advanced Data Collection from Twitter’s Streaming API 368
Summary 370

14. Automation and Scaling. 373
Why Automate? 373
Steps to Automate 375
What Could Go Wrong? 377
Where to Automate 378
Special Tools for Automation 379

Using Local Files, argv, and Config Files 380
Using the Cloud for Data Processing 386
Using Parallel Processing 389
Using Distributed Processing 392

Simple Automation 393
CronJobs 393
Web Interfaces 396
Jupyter Notebooks 397

Table of Contents | ix

www.it-ebooks.info

http://www.it-ebooks.info/

Large-Scale Automation 397
Celery: Queue-Based Automation 398
Ansible: Operations Automation 399

Monitoring Your Automation 400
Python Logging 401
Adding Automated Messaging 403
Uploading and Other Reporting 409
Logging and Monitoring as a Service 409

No System Is Foolproof 411
Summary 411

15. Conclusion. 415
Duties of a Data Wrangler 415
Beyond Data Wrangling 416

Become a Better Data Analyst 416
Become a Better Developer 417
Become a Better Visual Storyteller 417
Become a Better Systems Architect 417

Where Do You Go from Here? 418

A. Comparison of Languages Mentioned. 419

B. Python Resources for Beginners. 423

C. Learning the Command Line. 425

D. Advanced Python Setup. 439

E. Python Gotchas. 453

F. IPython Hints. 465

G. Using Amazon Web Services. 469

Index. 473

x | Table of Contents

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

Welcome to Data Wrangling with Python! In this book, we will help you take your
data skills from a spreadsheet to the next level: leveraging the Python programming
language to easily and quickly turn noisy data into usable reports. The easy syntax
and quick startup for Python make programming accessible to everyone.

Imagine a manual process you execute weekly, such as copying and pasting data from
multiple sources into one spreadsheet for processing. This might take you an hour or
two every week. But after you’ve automated and scripted this task, it may take only 30
seconds to process! This frees up your time to do other things or automate more pro‐
cesses. Or imagine you are able to transform your data in such a way that you can
execute tasks you never could before because you simply did not have the ability to
process the information in its current form. But after working through Python exerci‐
ses with this book, you should be able to more effectively gather information from
data you previously deemed inaccessible, too messy, or too vast.

We will guide you through the process of data acquisition, cleaning, presentation,
scaling, and automation. Our goal is to teach you how to easily wrangle your data, so
you can spend more time focused on the content and analysis. We will overcome the
limitations of your current tools and replace manual processing with clean, easy-to-
read Python code. By the time you finish working through this book, you will have
automated your data processing, scheduled file editing and cleanup tasks, acquired
and parsed data from locations you may not have been able to access before, and pro‐
cessed larger datasets.

Using a project-based approach, each chapter will grow in complexity. We encourage
you to follow along and apply the methods using your own datasets. If you don’t have
a particular project or investigation in mind, sample datasets will be available online
for your use.

xi

www.it-ebooks.info

http://www.it-ebooks.info/

Who Should Read This Book
This book is for folks who want to explore data wrangling beyond desktop tools. If
you are great at Excel and want to take your data analysis to the next level, this book
will help! Additionally, if you are coming from another language and want to get
started with Python for the purpose of data wrangling, you will find this book useful.

If you come across something you do not understand, we encourage you to reach out
so that we can improve the content of the book, but you should also be prepared to
supplement your learning by searching the Internet or inquiring online. We’ve
included a few tips on debugging in Appendix E, so you can take a look there as well!

Who Should Not Read This Book
This book is definitely not meant for experienced Python programmers who already
know which libraries and techniques to use for their data wrangling needs (for those
folks, we recommend Wes McKinney’s Python for Data Analysis, also from O’Reilly).
If you are an experienced Python developer or a developer in another language with
data analysis capabilities (Scala, R), this book is probably not for you. However, if you
are an experienced developer in a web language that lacks data analysis capabilities
(PHP, JavaScript), this book can teach you about Python via data wrangling.

How This Book Is Organized
The structure of the book follows the life span of an average data analysis project or
story. It starts with formulating a question, then moves on to acquiring the data,
cleaning the data, exploring the data, communicating the data findings, scaling with
larger datasets, and finally automating the process. This approach allows you to move
from simple questions to more complex problems and investigations. We will cover
basic means of communicating your findings before we get into advanced data-
gathering techniques.

If the material in some of these chapters is not new to you, it is possible to use the
book as a reference or skip sections with which you are already familiar. However, we
recommend you take a cursory view of each section’s contents, to ensure you don’t
miss possible new resources and techniques.

What Is Data Wrangling?
Data wrangling is about taking a messy or unrefined source of data and turning it
into something useful. You begin by seeking out raw data sources and determining
their value: How good are they as datasets? How relevant are they to your goal? Is
there a better source? Once you’ve parsed and cleaned the data so that the datasets are

xii | Preface

www.it-ebooks.info

http://bit.ly/ask_programming_qs
http://shop.oreilly.com/product/0636920023784.do
http://www.it-ebooks.info/

usable, you can utilize tools and methods (like Python scripts) to help you analyze
them and present your findings in a report. This allows you to take data no one
would bother looking at and make it both clear and actionable.

What to Do If You Get Stuck
Don’t fret—it happens to everyone! Consider the process of programming a series of
events where you get stuck over and over again. When you are stuck and you work
through the problem, you gain knowledge that allows you to grow and learn as a
developer and data analyst. Most people do not master programming; instead, they
master the process of getting unstuck.

What are some “unsticking” techniques? First, you can use a search engine to try to
find the answer. Often, you will find many people have already run into the same
problem. If you don’t find a helpful solution, you can ask your question online. We
cover a few great online and real-life resources in Appendix B.

Asking questions is hard. But no matter where you are in your learning, do not feel
intimidated about asking the greater coding community for help. One of the earliest
questions one of this book’s authors (Jackie) asked about programming in a public
forum ended up being one that was referenced by many people afterward. It is a great
feeling to know that a new programmer like yourself can help those that come after
you because you took a chance and asked a question you thought might be stupid.

We also recommend you read “How to Ask Questions”, before posting your ques‐
tions online. It covers ways to help frame your questions so others can best help you.

Lastly, there are times when you will need an extra helping hand in real life. Maybe
the question you have is multifaceted and not easily asked or answered on a website
or mailing list. Maybe your question is philosophical or requires a debate or re-
hashing of different approaches. Whatever it may be, you can find folks who can
likely answer your question at local Python groups. To find a local meetup, try
Meetup. In Chapter 1, you will find more detailed information on how to find helpful
and supportive communities.

Preface | xiii

www.it-ebooks.info

http://bit.ly/git_ops_question
http://bit.ly/git_ops_question
http://bit.ly/ask_programming_qs
http://www.meetup.com/
http://www.it-ebooks.info/

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, directory names and
paths, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples
We’ve set up a data repository on GitHub at https://github.com/jackiekazil/data-
wrangling. In this repository, you will find the data we used along with some code
samples to help you follow along. If you find any issues in the repository or have any
questions, please file an issue.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of

xiv | Preface

www.it-ebooks.info

https://github.com/jackiekazil/data-wrangling
https://github.com/jackiekazil/data-wrangling
https://github.com/jackiekazil/data-wrangling/issues
http://www.it-ebooks.info/

the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples
from O’Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. Incorporating a signifi‐
cant amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Data Wrangling with Python by Jac‐
queline Kazil and Katharine Jarmul (O’Reilly). Copyright 2016 Jacqueline Kazil and
Kjamistan, Inc., 978-1-4919-4881-1.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that deliv‐
ers expert content in both book and video form from the
world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research,
problem solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, government,
education, and individuals.

Members have access to thousands of books, training videos, and prepublication
manuscripts in one fully searchable database from publishers like O’Reilly Media,
Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que,
Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kauf‐
mann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders,
McGraw-Hill, Jones & Bartlett, Course Technology, and hundreds more. For more
information about Safari Books Online, please visit us online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

Preface | xv

www.it-ebooks.info

mailto:permissions@oreilly.com
http://safaribooksonline.com
https://www.safaribooksonline.com/explore/
https://www.safaribooksonline.com/pricing/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/government/
https://www.safaribooksonline.com/academic-public-library/
https://www.safaribooksonline.com/our-library/
http://safaribooksonline.com
http://www.it-ebooks.info/

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/data_wrangling_w_python.

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
The authors would like to thank their editors, Dawn Schanafelt and Meghan Blanch‐
ette, for their tremendous help, work, and effort—this wouldn’t have been possible
without you. They would also like to thank their tech editors, Ryan Balfanz, Sarah
Boslaugh, Kat Calvin, and Ruchi Parekh, for their help in working through code
examples and thinking about the book’s audience.

Jackie Kazil would like to thank Josh, her husband, for the support on this
adventure—everything from encouragement to cupcakes. The house would have
fallen apart at times if he hadn’t been there to hold it up. She would also like to thank
Katharine (Kjam) for partnering. This book would not exist without Kjam, and she’s
delighted to have had a chance to work together again after years of being separated.
Lastly, she would also like to thank her mom, Lydie, who provided her with so many
of the skills, except for English, that were needed to finish this book.

Katharine Jarmul would like to send a beary special thanks to her partner, Aaron
Glenn, for countless hours of thinking out loud, rereading, debating whether Unix
should be capitalized, and making delicious pasta while she wrote. She would like to
thank all four of her parents for their patience with endless book updates and dong
bells. Sie möchte auch Frau Hoffmann für ihre endlose Geduld bei zahllosen Gesprä‐
chen auf Deutsch über dieses Buch bedanken.

xvi | Preface

www.it-ebooks.info

http://bit.ly/data_wrangling_w_python
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia
http://www.it-ebooks.info/

CHAPTER 1

Introduction to Python

Whether you are a journalist, an analyst, or a budding data scientist, you likely picked
up this book because you want to learn how to analyze data programmatically, sum‐
marize your findings, and clearly communicate those findings to others. You might
show your findings in a report, a graphic, or summarized statistics. Essentially, you
are trying to tell a story.

Traditional storytelling or journalism often uses an individual story to paint a relata‐
ble face on overall findings or trends. In that type of storytelling, the data becomes a
secondary feature. However, other storytellers, such as Christian Rudde, author of
Datacylsm (Broadway Books) and one of the founders of OkCupid, argue the data
itself is and should be the primary subject.

To begin, you need to identify the topic you want to explore. Perhaps you are interes‐
ted in exploring communication habits of different people or societies, in which case
you might start with a specific question (e.g., what are the qualities of successful
information sharing among people on the Web?). Or you might be interested in his‐
torical baseball statistics and question whether they show changes in the game over
time.

After you have identified your area of interest, you need to find data you can examine
to explore your topic further. In the case of human behavior, you could investigate
what people share on Twitter, drawing data from the Twitter API. If you want to delve
into baseball history, you could use Sean Lahman’s Baseball Database.

The Twitter and baseball datasets are examples of large, general datasets which should
be filtered and analyzed in manageable chunks to answer your specific questions.
Sometimes smaller datasets are just as interesting and meaningful, especially if your
topic touches on a local or regional issue. Let’s consider an example.

1

www.it-ebooks.info

http://dataclysm.org/
https://dev.twitter.com/overview/api
http://bit.ly/lahman_baseball_stats
http://www.it-ebooks.info/

1 Public high schools in the United States are government-run schools funded largely by taxes from the local
community, meaning children can attend and be educated at little to no cost to their parents.

While writing this book, one of the authors read an article about her public high
school,1 which had reportedly begun charging a $20 fee to graduating seniors and
$200 a row for prime seating at the graduation ceremony.

According to the local news report, “the new fees are a part of an effort to cover an
estimated $12,000 in graduation costs for Manatee High School after the financially
strapped school district pulled its $3,400 contribution this year.”

The article explains the reason why the graduation costs are so high in comparison to
the school district’s budget. However, it does not explain why the school district was
unable to make its usual contribution. The question remained: Why is the Manatee
County School District so financially strapped that it cannot make its regular contri‐
bution to the graduating class?

The initial questions you have in your investigation will often lead to deeper ques‐
tions that define a problem. For example: What has the district been spending money
on? How have the district’s spending patterns changed over time?

Identifying our specific topic area and the questions we want to anwer allows us to
identify the data we will need to find. After formulating these questions, the first
dataset we need to look for is the spending and budget data for the Manatee County
School District.

Before we continue, let’s look at a brief overview of the entire process, from initial
identification of a problem all the way to the final story (see Figure 1-1).

Once you have identified your questions, you can begin to ask questions about your
data, such as: Which datasets best tell the story I want to communicate? Which data‐
sets explore the subject in depth? What is the overall theme? What are some datasets
associated with those themes? Who might be tracking or keeping this data? Are these
datasets publicly available?

When you begin the storytelling process, you should focus on
researching the questions you want to answer. Then you can figure
out which datasets are most valuable to you. In this initial stage,
don’t get too caught up in the tools you’ll use to analyze the data or
the data wrangling process.

2 | Chapter 1: Introduction to Python

www.it-ebooks.info

http://bit.ly/grad_seating_charge
http://www.it-ebooks.info/

Figure 1-1. Data handling process

Finding Your Datasets
If you use a search engine to find a dataset, you won’t always find the best fit. Some‐
times you need to dig through a website for the data. Do not give up if the data proves
hard to find or difficult to acquire!

If your topic is exposed in a survey or report or it seems likely a particular agency or
organization might collect the data, find a contact number and reach out to the
researchers or organization. Ask them politely and directly how you might access the
data. If the dataset is part of a government entity (federal, state, or local), then you
may have legal standing under the Freedom of Information Act to obtain direct
access to the data. We’ll cover data acquisition more fully in Chapter 6.

Once you have identified the datasets you want and acquired them, you’ll need to get
them into a usable format. In Chapters 3, 4, and 5, you will learn various techniques
for programmatically acquiring data and transforming data from one form to
another. Chapter 6 will look at some of the logistics behind human-to-human interac‐
tion with regard to data acquisition and lightly touch on legalities. In the same Chap‐
ters 3 through 5, we will present how to extract data from CSV, Excel, XML, JSON,
and PDF files, and in Chapters 11, 12, and 13 you will learn how to extract data from
websites and APIs.

Introduction to Python | 3

www.it-ebooks.info

http://bit.ly/wikipedia_foia
http://www.it-ebooks.info/

If you don’t recognize some of these acronyms, don’t worry! They
will be explained thoroughly as we encounter them, as will other
technical terms with which you may not be familiar.

After you have acquired and transformed the data, you will begin your initial data
exploration. Here, you will seek stories the data might expose—all while determining
what is useful and what can be thrown away. You will play with the data by manipu‐
lating it into groups and looking at trends among the fields. Then you’ll combine
datasets to connect the dots and expose larger trends and uncover underlying incon‐
sistencies. Through this process you will learn how to clean the data and identify and
resolve issues hidden in your datasets.

While learning how to parse and clean data in Chapters 7 and 8, you will not only use
Python but also explore other open source tools. As we cover data issues you may
encounter, you will learn how to determine whether to write a cleanup script or use a
ready-made approach. In Chapter 7, we’ll cover how to fix common errors such as
duplicate records, outliers, and formatting problems.

After you have identified the story you want to tell, cleaned the data, and processed it,
we will explore how to present the data using Python. You will learn to tell the story
in multiple formats and compare different publication options. In Chapter 10, you
will find basic means of presenting and organizing data on a website.

Chapter 14 will help you scale your data-analysis processes to cover more data in less
time. We will analyze methods to store and access your data, and review scaling your
data in the cloud.

Chapter 14 will also cover how to take a one-off project and automate it so the project
can drive itself. By automating the processes, you can take what would be a one-time
special report and make it an annual one. This automation lets you focus on refining
your storytelling process, move on to another story, or at least refill your coffee.
Throughout this book the main tool used is the Python programming language. It
will help us work through each part of the storytelling process, from initial explora‐
tion to standardization and automation.

Why Python
There are many programming languages, so why does this book use Python?
Depending on what your background is, you may have heard of one or more of the
following alternatives: R, MATLAB, Java, C/C++, HTML, JavaScript, and Ruby. Each
of these has one or more primary uses, and some of them can be used for data wran‐
gling. You can also execute a data wrangling process in a program like Excel. You can
often program Excel and Python to give you the same output, but one will likely be

4 | Chapter 1: Introduction to Python

www.it-ebooks.info

http://www.it-ebooks.info/

more efficient. In some cases, though, a program like Excel can’t handle the task. We
chose Python over the other options because Python is easy to get started with and
handles data wrangling tasks in a simple and straightforward way.

If you would like to learn the more technical labeling and classification of Python and
other languages, check out Appendix A. Those explanations will enable you to con‐
verse with other analysts or developers about why you’re using Python. As a new
developer, we believe you will benefit from Python’s accessibility, and we hope this
book will be one of many useful references in your data wrangling toolbox.

Aside from the benefits of Python as a language, it also has one of the most open and
helpful communities. No community is perfect, but the Python community works to
create a supportive environment for newcomers: sometimes this is with locally hosted
tutorials, free classes, and meetups, and at other times it is with larger conferences
that bring people together to solve problems and share knowledge.

Having a larger community has obvious benefits—there are people who can answer
your questions, people who can help brainstorm your code’s or module’s structure,
people you can learn from, shared code you can build upon. To learn more, check out
Appendix B.

The community exists because people support it. When you are first starting out with
Python, you will take from the community more than you contribute. However, there
is quite a lot the greater community can learn from individuals who are not experts.
We encourage you to share your problems and solutions. This will help the next per‐
son who has the same problems, and you may uncover a bug that needs to be
addressed in an open source tool.

Many members of the Python community no longer have the fresh
eyes you currently possess. As you begin typing Python, you should
consider yourself part of the programming community. Your con‐
tributions are as valuable as those of the individuals who have been
programming for 20 years.

Without further ado, let’s get started with Python!

Getting Started with Python
Your initial steps with programming are the most difficult (not dissimilar to the first
steps you take as a human!). Think about times you started a new hobby or sport.
Getting started with Python (or any other programming language) will share some
similar angst and hiccups. Perhaps you are lucky and have an amazing mentor to help
you through the first stages. If not, maybe you have experience taking on similar

Getting Started with Python | 5

www.it-ebooks.info

http://www.it-ebooks.info/

challenges. Regardless of how you get through the initial steps, if you do encounter
difficulties, remember this is often the hardest part.

We hope this book can be a guide for you, but it’s no substitute for
good mentorship or broader experiences with Python. Along the
way, we’ll provide tips on some resources and places to look if a
problem you encounter isn’t addressed.

To avoid getting bogged down in an extensive or advanced setup, we will use a very
minimal initial setup for our Python environment. In the following sections, we will
select a Python version, install Python and a tool to help us with external code and
libraries, and install a code editor so we can write and run our code.

Which Python Version
You will need to choose which version of Python to use. Python versions are actually
versions of something called the Python interpreter. The interpreter allows you to
read, write, and run Python on your computer. Wikipedia describes it as follows:

In computer science, an interpreter is a computer program that directly executes, i.e.
performs, instructions written in a programming or scripting language, without previ‐
ously compiling them into a machine language program.

No one is going to ask you to memorize this definition, so don’t worry if you do not
completely understand this. When Jackie first got started in programming, this was
the part in introductory books where she felt that she would never get anywhere,
because she didn’t understand what “batch compiling” meant. If she didn’t under‐
stand that, how could she program? We will talk about compiling later, but for now
let’s summarize the definition like so:

An interpreter is the computer program that reads and executes your Python code.

There are two major Python versions (or interpreters), Python 2.X and Python 3.X.
The most recent version of Python 2.X is 2.7, which is the Python version used in this
book. The most recent version of Python 3.X is Python 3.5, which is also the newest
Python version available. For now, assume code you write for 2.7 will not work in 3.4.
The term used to describe this is to say that 3.4 breaks backward compatibility.

You can write code to work with both 2.7 and 3.4; however, this is not a requirement
nor the focus of this book. Getting preoccupied with doing this at the beginning is
like living in Florida and worrying about how to drive in snow. One day, you might
need this skill, but it’s not a concern at this point in time.

Some people reading this book are probably asking themselves why we decided to use
Python 2.7 and not Python 3.4. This is a highly debated topic within the Python com‐
munity. Python 2.7 is a well-utilized release, while 3.X is currently being adopted. We

6 | Chapter 1: Introduction to Python

www.it-ebooks.info

http://bit.ly/wikipedia_interpreter
http://www.it-ebooks.info/

want to make sure you can find easy-to-read and easy-to-access resources and that
your operating system and services support the Python version you use.

Quite a lot of the code written in this book will work with Python
3. If you’d like to try out some of the examples with Python 3, feel
free; however, we’d rather you focus on learning Python 2.7 and
move on to Python 3 after completing this book. For more infor‐
mation on the changes required to make code Python 3–compliant,
take a look at the change documentation.

As you move through this book, you will use both self-written code and code written
by other (awesome) people. Most of these external pieces of code will work for
Python 2.7, but might not yet work for 3.4. If you were using Python 3, you would
have to rewrite them—and if you spend a lot of time rewriting and editing every piece
of code you touch, it will be very difficult to finish your first project.

Think of your first pieces of code like a rough draft. Later, you can go back and
improve them with further revisions. For now, let’s begin by installing Python.

Setting Up Python on Your Machine
The good news is Python can run on any operating system. The bad news is not all
operating systems have the same setup. There are two major operating systems we
will discuss, in order of popularity with respect to programming Python: Mac OS X
and Windows. If you are running Mac OS X or Linux, you likely already have Python
installed. For a more complete installation, we recommend searching the Web for
your flavor of Linux along with “advanced Python setup” for more advice.

OS X and Linux are a bit easier to install and run Python code on
than Windows. For a deeper understanding of why these differ‐
ences exist, we recommend reading the history of Windows versus
Unix-based operating systems. Compare the Unix-favoring view
presented in Hadeel Tariq Al-Rayes’s “Studying Main Differences
Between Linux & Windows Operating Systems” to Microsoft’s
“Functional Comparison of UNIX and Windows”.

If you use Windows, you should be able to execute all the code; however, Windows
setups may need additional installation for code compilers, additional system libra‐
ries, and environment variables.

To set up your computer to use Python, follow the instructions for your operating
system. We will run through a series of tests to make sure things are working for you
the way they should before moving on to the next chapter.

Getting Started with Python | 7

www.it-ebooks.info

https://docs.python.org/3.0/whatsnew/3.0.html
http://bit.ly/linux_v_windows
http://bit.ly/linux_v_windows
http://bit.ly/unix_v_windows
http://www.it-ebooks.info/

Mac OS X
Start by opening up Terminal, which is a command-line interface that allows you to
interact with your computer. When PCs were first introduced, command-line inter‐
faces were the only way to interact with computers. Now most people use graphical
interface operating systems, as they are more easily accessible and widely distributed.

There are two ways to find Terminal on your machine. The first is through OS X’s
Spotlight. Click on the Spotlight icon—the magnifying glass in the upper-right corner
of your screen—and type “Terminal.” Then select the option that comes up next to
the Applications classification.

After you select it, a little window will pop up that looks like Figure 1-2 (note that
your version of Mac OS X might look different).

Figure 1-2. Terminal search using Spotlight

You can also launch Terminal through the Finder. Terminal is located in your Utilities
folder: Applications → Utilities → Terminal.

After you select and launch Terminal, you should see something like Figure 1-3.

At this time it is a good idea to create an easily accessible shortcut to Terminal in a
place that works well for you, like in the Dock. To do so, simply right-click on the
Terminal icon in your Dock and choose Options and then “Keep in Dock.” Each time
you execute an exercise in this book, you will need to access Terminal.

8 | Chapter 1: Introduction to Python

www.it-ebooks.info

http://en.wikipedia.org/wiki/Terminal_(OS_X)
http://www.it-ebooks.info/

Figure 1-3. A newly opened Terminal window

And you’re done. Macs come with Python preinstalled, which means you do not need
to do anything else. If you’d like to get your computer set up for future advanced
library usage, take a look at Appendix D.

Windows 8 and 10
Windows does not come with Python installed, but Python has a special Windows
installer. You’ll need to determine if you are running 32- or 64-bit Windows. If you
are running 64-bit Windows, you will need to download the x86-64 MSI Installer
from the downloads page. If not, you can use the x86 MSI Installer.

Once you have downloaded the installer, simply double-click on it and step through
the prompts to install. We recommend installing for all users. Click on the boxes next
to the options to select them all, and also choose to install the feature on your hard
drive (see Figure 1-4).

After you’ve successfully installed Python, you’ll want to add Python to your environ‐
ment settings. This allows you to interact with Python in your cmd utility (the Win‐
dows command-line interface). To do so, simply search your computer for
“environment variable.” Select the option “Edit the system environment variables,”
then click the Environment Variables…button (see Figure 1-5).

Getting Started with Python | 9

www.it-ebooks.info

https://www.python.org/downloads/windows/
https://www.python.org/downloads/windows/
http://bit.ly/32-_or_64-bit
http://bit.ly/how_2_search
http://www.it-ebooks.info/

Figure 1-4. Adding features using the installer

Figure 1-5. Editing environment variables

10 | Chapter 1: Introduction to Python

www.it-ebooks.info

http://www.it-ebooks.info/

2 To open the cmd utility in Windows, simply search for Command Prompt or open All Programs and select
Accessories and then Command Prompt.

Scroll down in the “System variables” list and select the Path variable, then click
“Edit.” (If you don’t have a Path variable listed, click “New” to create a new one.)

Add this to the end of your Path value, ensuring you have a semicolon separating
each of the paths (including at the end of the existing value, if there was one):

C:\Python27;C:\Python27\Lib\site-packages\;C:\Python27\Scripts\;

The end of your Path variable should look similar to Figure 1-6. Once you are done
editing, click “OK” to save your settings.

Figure 1-6. Adding Python to Path

Test Driving Python
At this point, you should be on the command line (Terminal or cmd2) and ready to
launch Python. You should see a line ending with a $ on a Mac or a > on Windows.
After that prompt, type python, and press the Return (or Enter) key:

$ python

Getting Started with Python | 11

www.it-ebooks.info

http://www.it-ebooks.info/

If everything is working correctly, you should receive a Python prompt (>>>), as seen
in Figure 1-7.

Figure 1-7. Python prompt

For Windows users, if you don’t see this prompt, make sure your Path variable is
properly set up (as described in the preceding section) and everything installed cor‐
rectly. If you’re using the 64-bit version, you may need to uninstall Python (you can
use the install MSI you downloaded to modify, uninstall, and repair your installation)
and try installing the 32-bit version. If that doesn’t work, we recommend searching
for the specific error you see during the installation.

>>> Versus $ or >

The Python prompt is different from the system prompt ($ on
Mac/Linux, > on Windows). Beginners often make the mistake of
typing Python commands into the default terminal prompt and
typing terminal commands into the Python interpreter. This will
always return errors. If you receive an error, keep this in mind and
check to make sure you are entering Python commands only in the
Python interpreter.
If you type a command into your Python interpreter that should be
typed in your system terminal, you will probably get a NameError
or SyntaxError. If you type a Python command into your system
terminal, you will probably get a bash error, command not found.

When the Python interpreter starts, we’re given a few helpful lines of information.
One of those helpful hints shows the Python version we are using (Figure 1-7 shows
Python 2.7.5). This is important in the troubleshooting process, as sometimes there
are commands or tools you can use with one Python version that don’t work in
another.

Now, let’s test our Python installation by using a quick import statement. Type the
following into your Python interpreter:

import sys
import pprint
pprint.pprint(sys.path)

12 | Chapter 1: Introduction to Python

www.it-ebooks.info

http://www.it-ebooks.info/

The output you should recieve is a list of a bunch of directories or locations on your
computer. This list shows where Python is looking for Python files. This set of com‐
mands can be a useful tool when you are trying to troubleshoot Python import
errors.

Here is one example output (your list will be a little different from this; also, note also
that some lines have been wrapped to fit this book’s page constraints):

['',
 '/usr/local/lib/python2.7/site-packages/setuptools-4.0.1-py2.7.egg',
 '/usr/local/lib/python2.7/site-packages/pip-1.5.6-py2.7.egg',
 '/usr/local/Cellar/python/2.7.7_1/Frameworks/Python.framework/Versions/2.7/
 lib/python27.zip',
 '/usr/local/Cellar/python/2.7.7_1/Frameworks/Python.framework/Versions/2.7/
 lib/python2.7',
 '/usr/local/Cellar/python/2.7.7_1/Frameworks/Python.framework/Versions/2.7/
 lib/python2.7/lib-tk',
 '/Library/Python/2.7/site-packages',
 '/usr/local/lib/python2.7/site-packages']

If your code was unsuccessful, you will have received an error. The easiest way to
debug Python errors is to read them. For example, if you type in import sus instead
of import sys, you will get the following output:

>>> import sus
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ImportError: No module named sus

Read the last line: ImportError: No module named sus. This line tells you there is
an import error, because there is no sus module in Python. Python has searched
through the files on your computer and cannot find an importable Python file or
folder of files called sus.

If you make a typo in the code you transfer from this book, you will likely get a syntax
error. In the following example, we purposely mistyped pprint.pprint and instead
entered pprint.print(sys.path()):

>>> pprint.print(sys.path())
 File "<stdin>", line 1
 pprint.print(sys.path())
 ^
SyntaxError: invalid syntax

We purposely mistyped it, but during the writing of this book, one of the authors did
mistype it. You need to get comfortable troubleshooting errors as they arise. You
should acknowledge that errors will be a part of the learning process as a developer.
We want to make sure you are comfortable seeing errors; you should treat them as
opportunities to learn something new about Python and programming.

Getting Started with Python | 13

www.it-ebooks.info

http://www.it-ebooks.info/

Import errors and syntax errors are some of the most common you will see while
developing code, and they are the easiest to troubleshoot. When you come across an
error, web search engines will be useful to help you fix it.

Before you continue, make sure to exit from the Python interpreter. This takes you
back to the Terminal or cmd prompt. To exit, type the following:

exit()

Now your prompt should return to $ (Mac/Linux) or > (Windows). We will play
more with the Python interpreter in the next chapter. For now, let’s move on to instal‐
ling a tool called pip.

Install pip
pip is a command-line tool used to manage shared Python code and libraries. Pro‐
grammers often solve the same problems, so folks end up sharing their code to help
others. That is one key part of the open source software culture.

Mac users can install pip by running a simple downloadable Python script in Termi‐
nal. You will need to be in the same folder you downloaded the script into. For exam‐
ple, if you downloaded the script into your Downloads folder, you will need to change
into that folder from your Terminal. One easy shortcut on a Mac is to press the Com‐
mand key (Cmd) and then drag your Downloads folder onto your Terminal. Another
is to type some simple bash commands (for a more comprehensive introduction to
bash, check out Appendix C). Begin by typing this into your Terminal:

cd ~/Downloads

This tells your computer to change directory into the Downloads subfolder in your
home folder. To make sure you are in your Downloads folder, type the following into
your Terminal:

pwd

This asks the Terminal to show your present working directory, the folder you are cur‐
rently in. It should output something like the following:

/Users/your_name/Downloads

If your output looks similar, you can run the file by simply using this command:

sudo python get-pip.py

Because you are running a sudo command (meaning you are using special permis‐
sions to run the command so it can install packages in restricted places), you will be
prompted to type in your password. You should then see a series of messages instal‐
ling the package.

14 | Chapter 1: Introduction to Python

www.it-ebooks.info

http://pip.readthedocs.org/en/latest/
http://bit.ly/install_pip
http://www.it-ebooks.info/

On Windows, you likely already have pip installed (it comes with
the Windows installation package). To check, you can type pip
install ipython into your cmd utility. If you receive an error,
download the pip installation script and use chdir C:\Users

\YOUR_NAME\Downloads to change into your Downloads folder
(substituting your computer’s home directory name for
YOUR_NAME). Then, you should be able to execute the downloaded
file by typing python get-pip.py. You will need to be an adminis‐
trator on your computer to properly install everything.

When you use pip, your computer searches PyPI for the specified code package or
library, downloads it to your machine, and installs it. This means you do not have to
use a browser to download libraries, which can be cumbersome.

We’re almost done with the setup. The final step is installing our code editor.

Install a Code Editor
When writing Python, you’ll need a code editor, as Python requires special spacing,
indentation, and character encoding to run properly. There are many code editors to
choose from. One of the authors of this book uses Sublime. It is free, but suggests a
nominal fee after a certain time period to help support current and future develop‐
ment. You can download Sublime here. Another completely free and cross-platform
text editor is Atom.

Some people are particular about their code editors. While you do not have to use the
editors we recommend, we suggest avoiding Vim, Vi, or Emacs unless you are already
using these tools. Some programming purists use these tools exclusively for their
code (one of the authors among them), because they can navigate the editor com‐
pletely by keyboard. However, if you choose one of these editors without having any
experience with it, you’ll likely have trouble making it through this book as you’ll be
learning two things at once.

Learn one thing at a time, and feel free to try several editors until
you find one that lets you code easily and freely. For Python devel‐
opment, the most important thing is having an editor you feel
comfortable with that supports many file types (look for Unicode
and UTF-8 support).

After you have downloaded and installed your editor of choice, launch the program
to make sure the installation was successful.

Getting Started with Python | 15

www.it-ebooks.info

http://pypi.python.org
http://www.sublimetext.com/
http://www.sublimetext.com/
https://atom.io/
http://www.it-ebooks.info/

Optional: Install IPython
If you’d like to install a slightly more advanced Python interpreter, we recommend
installing a library called IPython. We review some benefits and use cases as well as
how to install IPython in Appendix F. Again, this is not required, but it can be a use‐
ful tool in getting started with Python.

Summary
In this chapter, we learned about the two popular Python versions. We also comple‐
ted some initial setup so we can move forward with data wrangling:

1. We installed and tested Python.
2. We installed pip.
3. We installed a code editor.

This is the most basic setup required to get started. As you learn more about Python
and programming, you will discover more complex setups. Our aim here was to get
you started as quickly as possible without getting too overwhelmed by the setup pro‐
cess. If you’d like to take a look at a more advanced Python setup, check out Appen‐
dix D.

As you work through this book, you might encounter tools you need that require a
more advanced setup; in that event we will show you how to create a more complex
setup from your current basic one. For now, your first steps in Python require only
what we’ve shown here.

Congratulations—you have completed your initial setup and run your first few lines
of Python code! In the next chapter, we will start learning basic Python concepts.

16 | Chapter 1: Introduction to Python

www.it-ebooks.info

http://ipython.org/install.html
http://www.it-ebooks.info/

CHAPTER 2

Python Basics

Now that you are all set up to run Python on your computer, let’s go over some basics.
We will build on these initial concepts as we move through the book, but we need to
learn a few things before we are able to continue.

In the previous chapter, you tested your installation with a couple of lines of code:

import sys
import pprint
pprint.pprint(sys.path)

By the end of this chapter, you will understand what is happening in each of those
lines and will have the vocabulary to describe what the code is doing. You will also
learn about different Python data types and have a basic understanding of introduc‐
tory Python concepts.

We will move quickly through this material, focusing on what you need to know to
move on to the next chapters. New concepts will come up in future chapters as we
need them. We hope this approach allows you to learn by applying these new con‐
cepts to datasets and problems that interest you.

Before we continue, let’s launch our Python interpreter. We will be using it to run our
Python code throughout this chapter. It is easy to skim over an introductory chapter
like this one, but we cannot emphasize enough the importance of physically typing
what you see in the book. Similar to learning a spoken language, it is most useful to
learn by doing. As you type the exercises in this book and run the code, you will
encounter numerous errors, and debugging (working through these errors) will help
you gain knowledge.

17

www.it-ebooks.info

http://www.it-ebooks.info/

Launching the Python Interpreter
We learned how to open the Python interpreter in Chapter 1. As a reminder, you first
need to navigate to your command-line prompt. Then type python (or ipython, if
you have installed IPython as outlined in Appendix F):

python

You should see output similar to this (notice that your prompt will change to the
Python interpreter prompt):

Python 2.7.7 (default, Jun 2 2014, 18:55:26)
[GCC 4.2.1 Compatible Apple LLVM 5.1 (clang-503.0.40)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>>

From this point forward, everything we type in this chapter is assumed to be in the
Python interpreter, unless otherwise specified If you’re using IPython, the prompt will
look like In [1]:.

Basic Data Types
In this section, we will go over simple data types in Python. These are some of the
essential building blocks for handling information in Python. The data types we will
learn are strings, integers, floats, and other non–whole number types.

Strings
The first data type we will learn about is the string. You may not have heard the word
string used in this context before, but a string is basically text and it is denoted by
using quotes. Strings can contain numbers, letters, and symbols.

These are all strings:

'cat'
'This is a string.'
'5'
'walking'
'$GOObarBaz340 '

If you enter each of those values into your Python interpreter, the interpreter will
return them back to you. The program is saying, “Hey, I heard you. You said, 'cat'
(or whatever you entered).”

The content of a string doesn’t matter as long as it is between matching quotes, which
can be either single or double quotes. You must begin and end the string with the
same quote (either single or double):

18 | Chapter 2: Python Basics

www.it-ebooks.info

http://www.it-ebooks.info/

'cat'
"cat"

Both of these examples mean the same thing to Python. In both cases, Python will
return 'cat', with single quotes. Some folks use single quotes by convention in their
code, and others prefer double quotes. Whichever you use, the main thing is to be
consistent in your style. Personally, we prefer single quotes because double quotes
require us to hold down the Shift key. Single quotes let us be lazy.

Integers and Floats
The second and third data types we are going to learn about are integers and floats,
which are how you handle numbers in Python. Let’s begin with integers.

Integers
You may remember integers from math class, but just in case you don’t, an integer is a
whole number. Here are some examples:

10
1
0
-1
-10

If you enter those into your Python interpreter, the interpreter will return them back
to you.

Notice in the string example in the previous section, we had a '5'. If a number is
entered within quotes, Python will process the value as a string. In the following
example, the first value and second value are not equal:

5
'5'

To test this, enter the following into your interpreter:

5 == '5'

The == tests to see if the two values are equal. The return from this test will be true or
false. The return value is another Python data type, called a Boolean. We will work
with Booleans later, but let’s briefly review them. A Boolean tells us whether a state‐
ment is True or False. In the previous statement, we asked Python whether 5 the inte‐
ger was the same as '5' the string. What did Python return? How could you make the
statement return True? (Hint: try testing with both as integers or both as strings!)

You might be asking yourself why anyone would store a number as a string. Some‐
times this is an example of improper use—for example, the code is storing '5' when
the number should have been stored as 5, without quotes. Another case is when fields
are manually populated, and may contain either strings or numbers (e.g., a survey

Basic Data Types | 19

www.it-ebooks.info

http://www.it-ebooks.info/

where people can type five or 5 or V). These are all numbers, but they are different
representations of numbers. In this case, you might store them as strings until you
process them.

One of the most common reasons for storing numbers as strings is a purposeful
action, such as storing US postal codes. Postal codes in the United States consist of
five numbers. In New England and other parts of the northeast, the zip codes begin
with a zero. Try entering one of Boston’s zip codes into your Python interpreter as a
string and as an integer. What happens?

'02108'
02108

Python will throw a SyntaxError in the second example (with the message invalid
token and a pointer at the leading zero). In Python, and in numerous other lan‐
guages, “tokens” are special words, symbols, and identifiers. In this case, Python does
not know how to process a normal (non-octal) number beginning with zero, meaning
it is an invalid token.

Floats, decimals, and other non–whole number types
There are multiple ways to tell Python to handle non–whole number math. This can
be very confusing and appear to cause rounding errors if you are not aware how each
non–whole number data type behaves.

When a non–whole number is used in Python, Python defaults to turning the value
into a float. A float uses the built-in floating-point data type for your Python version.
This means Python stores an approximation of the numeric value—an approximation
that reflects only a certain level of precision.

Notice the difference between the following two numbers when you enter them into
your Python interpreter:

2
2.0

The first one is an integer. The second one is a float. Let’s do some math to learn a
little more about how these numbers work and how Python evaluates them. Enter the
following into your Python interpreter:

2/3

What happened? You got a zero value returned, but you were likely expecting
0.6666666666666666 or 0.6666666666666667 or something along those lines. The
problem was that those numbers are both integers and integers do not handle frac‐
tions. Let’s try turning one of those numbers into a float:

2.0/3

20 | Chapter 2: Python Basics

www.it-ebooks.info

http://www.it-ebooks.info/

Now we get a more accurate answer of 0.6666666666666666. When one of the num‐
bers entered is a float, the answer is also a float.

As mentioned previously, Python floats can cause accuracy issues. Floats allow for
quick processing, but, for this reason, they are more imprecise.

Computationally, Python does not see numbers the way you or your calculator
would. Try the following two examples in your Python interpreter:

0.3
0.1 + 0.2

With the first line, Python returns 0.3. On the second line, you would expect to see
0.3 returned, but instead you get 0.30000000000000004. The two values 0.3 and
0.30000000000000004 are not equal. If you are interested in the nuances of this, you
can read more in the Python docs.

Throughout this book, we will use the decimal module (or library) when accuracy
matters. A module is a section or library of code you import for your use. The
decimal module makes your numbers (integers or floats) act in predictable ways (fol‐
lowing the concepts you learned in math class).

In the next example, the first line imports getcontext and Decimal from the decimal
module, so we have them in our environment. The following two lines use
getcontext and Decimal to perform the math we already tested using floats:

from decimal import getcontext, Decimal
getcontext().prec = 1
Decimal(0.1) + Decimal(0.2)

When you run this code, Python returns Decimal('0.3'). Now when you enter
print Decimal('0.3'), Python will return 0.3, which is the response we originally
expected (as opposed to 0.30000000000000004).

Let’s step through each of those lines of code:

from decimal import getcontext, Decimal
getcontext().prec = 1
Decimal(0.1) + Decimal(0.2)

Imports getcontext and Decimal from the decimal module.

Sets the rounding precision to one decimal point. The decimal module stores
most rounding and precision settings in a default context. This line changes that
context to use only one-decimal-point precision.

Sums two decimals (one with value 0.1 and one with value 0.2) together.

Basic Data Types | 21

www.it-ebooks.info

https://docs.python.org/2/tutorial/floatingpoint.html
http://bit.ly/floating_point_math
https://docs.python.org/2/library/decimal.html
http://www.it-ebooks.info/

What happens if you change the value of getcontext().prec? Try it and rerun the
final line. You should see a different answer depending on how many decimal points
you told the library to use.

As stated earlier, there are many mathematical specifics you will encounter as you
wrangle your data. There are many different approaches to the math you might need
to perform, but the decimal type allows us greater accuracy when using nonwhole
numbers.

Numbers in Python
The different levels of accuracy available in Python’s number types are one example of
the nuisances of the Python language. We will learn more about numeric and math
libraries in Python as we learn more about data wrangling in this book. If you are
curious now, here are some Python libraries you will become familiar with if you are
going to do math beyond the basics:

• decimal, for fixed-point and floating-point arithmetic
• math, for access to the mathematical functions defined by the C standard
• numpy, a fundamental package for scientific computing in Python
• sympy, a Python library for symbolic mathematics
• mpmath, a Python library for real and complex floating-point arithmetic with

arbitrary precision

We’ve learned about strings, integers, and floats/decimals. Let’s use these basic data
types as building blocks for some more complex ones.

22 | Chapter 2: Python Basics

www.it-ebooks.info

https://docs.python.org/2/library/decimal.html
https://docs.python.org/2/library/math.html
http://bit.ly/numpy_math
http://docs.sympy.org/latest/index.html
http://mpmath.org/
http://www.it-ebooks.info/

Data Containers
In this section, we’ll explain data containers, which hold multiple data points. It
should be noted, however, that these containers are data types as well. Python has a
few common containers: variables, lists, and dictionaries.

Variables
Variables give us a way to store values, such as strings or numbers or other data con‐
tainers. A variable is made of a string of characters, which is often a lowercase word
(or words connected with underscores) that describes what is contained.

Let’s try creating a simple variable. In your Python interpreter, try the following:

filename = 'budget.csv'

If you entered this correctly, your interpreter should return nothing. This is different
from when we entered a string into the Python interpreter. If you simply entered
'budget.csv' into your Python interpreter, it would output 'budget.csv'.

When you create a variable, you are assigning what the program would normally out‐
put to the variable as its value. That is why nothing is returned when you create a new
variable. In our example, our variable is called filename and it holds the string we
typed ('budget.csv') as its value.

Object-Oriented Programming
You may have heard of object-oriented programming, or OOP for short. Python is an
object-oriented programming language. The “object” in OOP can be any of the data
types we learned about in this chapter such as strings, variables, numbers or floats.

In the example given in the text, our object is a string and it is stored now in
filename. Every variable we define is a Python object. In Python, we use objects to
store data we need later. These objects often have different qualities and actions they
can perform, but they are all objects.

For example, each integer object can be added to another integer using a + symbol
(the addition operator). As you continue learning Python, you will learn more of the
qualities and actions of these objects and their underlying types—and come to appre‐
ciate object-oriented programming as a result!

When we created a string of letters and assigned it to the variable called filename, we
followed some general variable naming principles. Don’t worry about memorizing

Data Containers | 23

www.it-ebooks.info

http://www.it-ebooks.info/

these rules, but do keep them in mind if you receive an error in your code after defin‐
ing a new variable:

• Underscores are OK, hyphens are not.
• Numbers are OK, but variable names cannot start with a number.
• For reading ease, use lowercase letters with words separated by underscores.

Try the following code:

1example = 'This is going to break.'

What happened? What kind of error did you get? You should have gotten a syntax
error, because you violated the second rule.

As long as you do not break Python’s rules around naming variables, you can name
the variable almost anything. To illustrate:

horriblevariablenamesarenotdescriptiveandtoolong = 'budget.csv'

As you can tell, this variable name is too long and not descriptive. Also, the lack of
underscores makes it hard to read. What makes a good variable name? Ask yourself:
What is something that will make sense to me six months from now and help me
understand the code when I have forgotten everything?

Let’s move on to a more reasonable variable name—cats. The value doesn’t have to
be a filename, as in our previous example. Your variables can have a variety of values
and names. Let’s pretend we are counting our cats, so we want to assign an integer to
the variable cats:

cats = 42

If our Python script keeps track of how many cats we have, we don’t need to know the
exact value at any one point in time. All we need to know is that the value is stored in
the variable cats, so if we call cats in our interpreter or use it in another part of our
code, it will always return the current number of cats.

To call a variable is to ask Python for its value. Let’s call cats. Type cats into your
interpreter. You should get 42 in return. When you type filename, you should get the
string 'budget.csv' in return. Try this on your machine:

>>> cats
42
>>> filename
'budget.csv'
>>>

If you type in a variable name that does not exist (or if you misspelled either of those)
you will see the following error:

24 | Chapter 2: Python Basics

www.it-ebooks.info

http://www.it-ebooks.info/

>>> dogs
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
NameError: name 'dogs' is not defined

As stated earlier, it is important to learn how to read errors, so you can understand
what you did wrong and how to fix it. In this example, the error says, dogs is not
defined which means we did not define a variable named dogs. Python doesn’t know
what we are asking it to call because we have not defined that variable.

You would get the same error if your forgot to include the quotes in 'budget.csv' in
our first example. Try this in your Python interpreter:

filename = budget.csv

The error returned is NameError: name budget is not defined. This is because
Python does not know budget.csv is supposed to be a string. Remember, a string is
always denoted using quotes. Without those quotes, Python tries to interpret it as
another variable. The main takeaway from this exercise is to note which line the error
is on and ask yourself, what might be incorrect? In our dogs example, the error mes‐
sage tells us it’s on line 1. If we had many lines of code, the error might show line 87.

All of the examples presented so far have been short strings or integers. Variables can
also hold long strings—even ones spanning multiple lines. We chose to use short
strings in our examples because long strings are not fun for you (or us) to type.

Try out a variable that holds a long string. Note that our string also has a single quote,
meaning we must use double quotes to store it:

recipe = "A recipe isn't just a list of ingredients."

Now if you type recipe, you will get the long string that was stored:

>>>recipe
"A recipe isn't just a list of ingredients."

Strings or integers are not required data types for variables. Variables can hold all
sorts of different Python data types, which we will learn more about in the following
sections.

Lists
A list is a group of values that have some relationship in common. You use a list in
Python similarly to how you would use it in normal language. In Python, you can
create a list of items by placing them within square brackets([]) and separating them
with commas.

Let’s make a list of groceries in Python:

['milk', 'lettuce', 'eggs']

Data Containers | 25

www.it-ebooks.info

http://www.it-ebooks.info/

This list is made of strings, not variables. This is recognizable,
because the words are enclosed in quotes. If these were variables,
they would not have the quotes around them.

If you press Return, Python will return the following:

['milk', 'lettuce', 'eggs']

You have made your first Python list: a list of strings. You can make lists of any
Python data type, or any mixture of data types (i.e., floats and strings). Let’s make a
list of integers and floats:

[0, 1.0, 5, 10.0]

Now, let’s store our list in a variable, so we can use it later in our code. Variables are
helpful because they prevent us from having to type out our data time and time again.
Typing out data by hand is error-prone and isn’t very efficient if your list is, say, 5,000
items long. Just as we mentioned earlier, variables are a way to store values in an aptly
named container.

Try the following in your Python interpreter:

shopping_list = ['milk', 'lettuce', 'eggs']

When you press Return, you should see a new line. It will appear as if nothing hap‐
pened. Remember earlier when we had the list echoed back to us? Now, Python is
storing the list in the shopping_list variable. If you call your variable by typing
shopping_list into your Python prompt, you should get the following returned:

shopping_list
['milk', 'lettuce', 'eggs']

Lists can also store variables. Let’s say we have variables representing counts of ani‐
mals we are tracking in an animal shelter:

cats = 2
dogs = 5
horses = 1

Now, we can take the counts of those animals and put them in a list:

animal_counts = [cats, dogs, horses]

If you enter animal_counts into your Python interpreter, Python will return the fol‐
lowing value:

[2, 5, 1]

The variables hold the information for us. When we type the variables, Python
returns the underlying values stored in our variables.

26 | Chapter 2: Python Basics

www.it-ebooks.info

http://www.it-ebooks.info/

You can also create lists of lists. Let’s say we have a list of names for our animals:

cat_names = ['Walter', 'Ra']
dog_names = ['Joker', 'Simon', 'Ellie', 'Lishka', 'Fido']
horse_names = ['Mr. Ed']
animal_names = [cat_names, dog_names, horse_names]

If you enter animal_names into your Python interpreter, Python will return the fol‐
lowing value:

[['Walter', 'Ra'], ['Joker', 'Simon', 'Ellie', 'Lishka', 'Fido'], ['Mr. Ed']]

You didn’t have to type out all those names to create a list of lists. The original vari‐
ables (cat_names, dog_names, horse_names), which are lists, are still accessible. For
example, if you type cat_names, you will get ['Walter', 'Ra'] in return.

Now that we’ve explored lists, we’ll move on to a slightly more complex data con‐
tainer, called a dictionary.

Dictionaries
A dictionary is more complex than a variable or list, and it is aptly named. Think of a
Python dictionary like a dictionary in the traditional sense of the word—as a resource
you can use to look up words to get their definitions. In a Python dictionary, the
words you look up are called the keys and the definitions of these words are called the
values. In Python, the key is something that points to a value.

Let’s go back to our animals. animal_numbers holds a list of the different numbers of
animals we have, but we don’t know which number belongs to which animal type. A
dictionary is a great way to store that information.

In the following example, we are using the animal types as the keys, and the counts of
each animal type as the values:

animal_counts = {'cats': 2, 'dogs': 5, 'horses': 1}

If we want to access one of the values using a key, we can do so by accessing the key
from the dictionary (like looking up a word in a normal dictionary). To perform this
lookup in Python—say, for the number of dogs we have—we can type the following:

animal_counts['dogs']

You should see 5 returned, because we set the key 'dogs' equal to the value 5 in our
dictionary ('dogs': 5). As you can see, a dictionary is very useful when you have
matching keys and values you want to store. Dictionaries can be very powerful
depending on what your needs are, so let’s take a longer look at using lists with
dictionaries.

With our earlier list of animal names, it was hard to tell which list of names belonged
to which type of animal. It was not clear which list contained the names of the cats,

Data Containers | 27

www.it-ebooks.info

http://www.it-ebooks.info/

1 They are not exactly the same dictionary, since the second example uses objects that could be modified. For
more reading on the differences, check out Appendix E.

which one had the names of the dogs, and which held the names of the horses. With a
dictionary, however, we can make this distinction clearer:

animal_names = {
 'cats': ['Walter', 'Ra'],
 'dogs': ['Joker', 'Simon', 'Ellie', 'Lishka', 'Fido'],
 'horses': ['Mr. Ed']
 }

Here is another way to write the same underlying values using more variables:

cat_names = ['Walter', 'Ra']
dog_names = ['Joker', 'Simon', 'Ellie', 'Lishka', 'Fido']
horse_names = ['Mr. Ed']

animal_names = {
 'cats': cat_names,
 'dogs': dog_names,
 'horses': horse_names
 }

This line defines the variable cat_names as a list of cat names (a list of strings).

This line uses the variable cat_names to pass that list of names as the value for
the key 'cats' in the dictionary.

Both versions give us the same dictionary, although in slightly different ways.1 As you
learn more Python, you will be better able to determine when defining more variables
makes sense and when it is not useful. For now, you can see it is easy to use many
different defined variables (like cat_names and dog_names) to create new variables
(like animal_names).

While Python does have spacing and formatting rules, you do not
have to format a dictionary as we have done here. However, your
code should be as easy to read as possible. Making sure your code is
readable is something for which you and other developers you
work with will be thankful.

What Can the Various Data Types Do?
Each of the basic data types can do a variety of things. Here is a list of the data types
we’ve learned about so far, followed by examples of the kinds of actions you can tell
them to do:

28 | Chapter 2: Python Basics

www.it-ebooks.info

http://www.it-ebooks.info/

• Strings
— Change case
— Strip space off the end of a string
— Split a string

• Integers and decimals
— Add and subtract
— Simple math

• Lists
— Add to or subtract from the list
— Remove the last item of the list
— Reorder the list
— Sort the list

• Dictionaries
— Add a key/value pair
— Set a new value to the corresponding key
— Look up a value by the key

We’ve purposely not mentioned variables in this list. The things a
variable can do depend on the item it contains. For example, if a
variable is a string, then it can do everything a string can do. If a
variable is a list, then it can do different things only lists can do.

Think of the data types as nouns and the things they can do as verbs. For the most
part, the things data types can do are called methods. To access a data type’s method,
or make the data type do something, you use dot notation (.). For example, if you
have a string assigned to a variable you named foo, you can call the strip method of
that string by typing foo.strip(). Let’s look at few of these methods in action.

What Can the Various Data Types Do? | 29

www.it-ebooks.info

http://www.it-ebooks.info/

When we call a string’s methods, these actions are part of the
default Python libraries every Python installation shares (similar to
the default applications that come preinstalled on your phone).
These methods will be there on every computer running Python, so
every Python string can share the same methods (just like every
phone can make a phone call and every Apple phone can send an
iMessage). A vast assortment of built-in methods and basic data
types are included in the Python standard library (also known as
stdlib), including the Python data types you are now using.

String Methods: Things Strings Can Do
Let’s use our initial variable, filename. Originally, we defined the variable using
filename = 'budget.csv'. That was pretty convenient. Sometimes, though, things
are not so convenient. Let’s go through a few examples:

filename = 'budget.csv '

You’ll notice our filename string now has a lot of extra spaces we probably need to
strip off. We can use the Python string’s strip method, a built-in function that
removes unnecessary whitespace from the beginning and end of a string:

filename = 'budget.csv '
filename = filename.strip()

If you do not reassign the variable (set filename equal to the out‐
put of filename.strip()), then the modifications you made to
filename will not be stored.

If you enter filename in your Python interpreter, you should now see the spaces have
been stripped off.

Let’s say our filename needs to be in all capital letters. We can transform all the letters
to uppercase using the Python string’s built-in upper method:

filename = 'budget.csv'
filename.upper()

Your output should now show that we have properly uppercased the filename:

'BUDGET.CSV'

In this case, we did not reassign the uppercase string to the variable filename. What
happens when you call filename in your interpreter again? The output should still
read 'budget.csv'. If you don’t want to modify your variable but want to transform
it for one-time use, you can call methods like upper, as they will return the modified
string without changing the underlying variable.

30 | Chapter 2: Python Basics

www.it-ebooks.info

https://docs.python.org/2/library/
http://www.it-ebooks.info/

What if we wanted to reassign the variable by storing the return value using the same
variable name? In the following, we are changing the value of the filename variable
to be uppercase:

filename = 'budget.csv'
filename = filename.upper()

If you call filename after this line, the output will be 'budget.csv'.

If you call filename after this line, the output will be 'BUDGET.CSV'.

We could condense this code to run on one line:

filename = 'budget.csv'.upper()

The number of lines you use for your code is sometimes a matter of personal style or
preference. Make choices that make sense to you but keep your code clear, easy to
read, and obvious.

We only covered two string methods in these examples, strip and upper, but there
are many other built-in string methods. We will learn more about these methods as
we work with strings in our data wrangling.

Numerical Methods: Things Numbers Can Do
Integers and floats/decimals are mathematical objects. If you enter 40 + 2, Python
returns 42. If you want to store the answer in a variable, you assign it to a variable just
as we did in the string examples:

answer = 40 + 2

Now, if you type answer, you will get 42 in return. Most of the things you can do with
integers are pretty predictable, but there may be some special formatting you need to
use so your Python interpreter understands the math you want to perform. For exam‐
ple, if you wanted to square 42, then you would enter 42**2.

Integers, floats, and decimals also have many other methods, some of which we will
encounter as we learn about data wrangling.

What Can the Various Data Types Do? | 31

www.it-ebooks.info

http://www.it-ebooks.info/

Addition and Subtraction
You can also apply addition to other Python data types, such as strings and lists. Try
the following:

'This is ' + 'awesome.'

and:

['Joker', 'Simon', 'Ellie'] + ['Lishka', 'Turtle']

What happens if you try to use subtraction? What does the error produced by the fol‐
lowing line tell you?

['Joker', 'Simon', 'Ellie', 'Lishka', 'Turtle'] - ['Turtle']

You should receive an error saying TypeError: unsupported operand type(s) for
-: 'list' and 'list'. This tells us Python lists support addition, but not subtrac‐
tion. This is because of choices Python’s developers have made in what methods each
type should support. If you want to read about how to perform subtraction on a list,
check out the Python list’s remove method.

List Methods: Things Lists Can Do
There are a few must-know methods for lists. Let’s start with an empty list and use a
method to add values to it.

First, define an empty list like so:

dog_names = []

If you enter dog_names into your interpreter, it will return [], Python’s way of show‐
ing an empty list. Earlier in the chapter, we had a bunch of names stored in that vari‐
able, but we redefined it in the last line so now it is an empty list. The built-in append
method adds items to the list. Let’s use it now and add “Joker” to the list:

dog_names.append('Joker')

Now, if you enter dog_names, your list will return one item: ['Joker'].

On your own, build out the list using the append method until you have a list that
looks like this:

['Joker', 'Simon', 'Ellie', 'Lishka', 'Turtle']

Let’s say you accidentally added 'Walter', one of the cat names:

dog_names.append('Walter')

You can remove it with the Python list’s built-in remove method:

32 | Chapter 2: Python Basics

www.it-ebooks.info

http://bit.ly/python_data_structures
http://www.it-ebooks.info/

dog_names.remove('Walter')

While there are many more built-in methods for lists, append and remove are among
the most commonly used.

Dictionary Methods: Things Dictionaries Can Do
To learn some useful dictionary methods, let’s build our dictionary of animal counts
from scratch.

In the next example, we create an empty dictionary. Then, we add a key and define
the value of that key:

animal_counts = {}
animal_counts['horses'] = 1

Adding an object to a dictionary (animal_counts['horses']) is a little different from
adding an object to a list. This is because a dictionary has both a key and a value. The
key in this case is 'horses' and the value is 1.

Let’s define the rest of the dictionary with our animal counts:

animal_counts['cats'] = 2
animal_counts['dogs'] = 5
animal_counts['snakes'] = 0

Now when you type animal_counts in your Python interpreter, you should get the
following dictionary: {'horses': 1, 'cats': 2, 'dogs': 5, 'snakes': 0}.
(Since Python dictionaries don’t store order, your output might look different but
should contain the same keys and values.)

We are working with a very small example, but programming is not always so conve‐
nient. Imagine a dictionary of animal counts for all domesticated animals in the
world. As the programmer, we might not know all of the different types of animal this
animal_counts dictionary holds. When handling a large and unknown dictionary, we
can use dictionary methods to tell us more about it. The following command returns
all the keys the dictionary holds:

animal_counts.keys()

If you have been following along with the exercises, if you type this in your inter‐
preter will return a list of keys that looks like this:

['horses', 'cats', 'dogs', 'snakes']

You can take any of those keys and retrieve the value associated with it from the dic‐
tionary. The following lookup will return the number of dogs:

animal_counts['dogs']

The output for this line is 5.

What Can the Various Data Types Do? | 33

www.it-ebooks.info

http://www.it-ebooks.info/

If you wanted to, you could save that value in a new variable so you don’t have to look
it up again:

dogs = animal_counts['dogs']

Now, if you enter the variable dogs directly, Python will return 5.

Those are some of the basic things you can do with a dictionary. Just like with strings
and lists, we will learn more about dictionaries as we apply more complex problems
to our code.

Helpful Tools: type, dir, and help
There are a couple of built-in tools in the Python standard library that can help you
identify what data types or objects you have and what things you can do with them
(i.e., what their methods are). In this section, we will learn about three tools that
come as part of the Python standard library.

type
type will help you identify what kind of data type your object is. To do this in your
Python code, wrap the variable in type()—for example, if the variable name is dogs,
then you would enter type(dogs) into the Python prompt. This is extremely helpful
when you are using a variable to hold data and need to know what type of data is in
the variable. Consider the zip code example from earlier in the chapter.

Here, we have two different uses for the value 20011. In the first case, it is a zip code
stored as a string. In the second case, it is an integer:

'20011'
20011

If those values were stored in variables, they would be further obscured and we might
not know or remember whether we used a string or an integer.

If we pass the value to the built-in method type, then Python will tell us what kind of
data type the object is. Try it:

type('20011')
type(20011)

The first line returns str. The second line returns int. What happens when you pass
a list to type? And a variable?

Identifying the type of an object can be very helpful when you are trying to trouble‐
shoot an error or work with someone else’s code. Remember when we tried to sub‐
tract a list from another list (in “Addition and Subtraction” on page 32)? Well, you

34 | Chapter 2: Python Basics

www.it-ebooks.info

http://www.it-ebooks.info/

cannot subtract a string from a string either. So, the string '20011' has very different
possible methods and use cases than the integer 20011.

dir
dir will help you identify all the things a particular data type can do, by returning a
list of built-in methods and properties. Let’s try it out with the string
'cat,dog,horse':

dir('cat,dog,horse')

For now, ignore everything at the beginning of the returned list (the strings starting
with double underscores). These are internal or private methods Python uses.

The methods that are most useful are contained in the second part of the returned list
output. Many of these methods are obvious, or self-documenting. You should see
some of the methods we used on strings earlier in this chapter:

 [...,
 '__sizeof__',
 '__str__',
 '__subclasshook__',
 '_formatter_field_name_split',
 '_formatter_parser',
 'capitalize',
 'center',
 'count',
 'decode',
 'encode',
 'endswith',
 'expandtabs',
 'find',
 'format',
 'index',
 'isalnum',
 'isalpha',
 'isdigit',
 'islower',
 'isspace',
 'istitle',
 'isupper',
 'join',
 'ljust',
 'lower',
 'lstrip',
 'partition',
 'replace',
 'rfind',
 'rindex',
 'rjust',
 'rpartition',

Helpful Tools: type, dir, and help | 35

www.it-ebooks.info

http://www.it-ebooks.info/

 'rsplit',
 'rstrip',
 'split',
 'splitlines',
 'startswith',
 'strip',
 'swapcase',
 'title',
 'translate',
 'upper',
 'zfill']

If you look at the string 'cat,dog,horse', it looks like it is a list saved in a string. It’s
actually a single value, but with the Python string’s built-in split method we can
divide the string into smaller pieces by splitting it on the comma character, like so:

'cat,dog,horse'.split(',')

Python will return a list:

['cat', 'dog', 'horse']

Now let’s call the dir method on our list:

dir(['cat', 'dog', 'horse'])

There are not as many options as for strings, but let’s try a few. First, let’s turn the list
into a variable. You should know how to assign the list to a variable by now, but here’s
an example:

animals = ['cat', 'dog', 'horse']

Now, let’s try some new methods we found using dir on a list with our variable
animals:

animals.reverse()
animals.sort()

After you run each of those lines, print out the value of animals so you can see how
the the method has modified the list. What output did you expect? Was it the same
that you saw? Try using the dir method on integers and floats. (Hint: dir expects you
to pass only one object, so try dir(1) or dir(3.0)). Are there methods you didn’t
expect?

As you can see, dir gives you insight into the built-in methods for each Python data
type; these methods can prove valuable when wrangling data using Python. We rec‐
ommend taking time to experiment with the listed methods that interest you and
testing more methods with different data types.

36 | Chapter 2: Python Basics

www.it-ebooks.info

http://www.it-ebooks.info/

help
The third helpful built-in Python method we will review in this chapter is the help
method. This method will return the documentation for an object, method, or mod‐
ule—although it is often written in a very technical (sometimes cryptic) manner. Let’s
review the help for the split method we used in the previous section. If you didn’t
know you needed to put the character you wanted to split the string on inside the
parentheses, how would you know what the Python string’s split method expected?
Let’s pretend we didn’t know how to use split and called it without passing ',':

animals = 'cat,dog,horse'
animals.split()

This code returns the following:

['cat,dog,horse']

Looks good, right? Not upon closer inspection. As we can see, Python took our string
and put it into a list, but didn’t split the words into pieces using the commas. This is
because the built-in split method defaults to splitting the string on spaces, not com‐
mas. We have to tell Python to split on the commas by passing a comma string (',')
into the method.

To help us understand how the method works, let’s pass it to help. First, we have to
redefine our animals variable, because we turned it into a list. Let’s turn it back into a
string, then look up how split works:

animals = 'cat,dog,horse'
help(animals.split)

This line passes animals.split—without the ()—to the help method. You can
pass any object, method, or module to the help method, but as seen here, you
should not include the end parentheses when passing methods.

Python returns the following:

split(...)
 S.split([sep [,maxsplit]]) -> list of strings

 Return a list of the words in the string S, using sep as the
 delimiter string. If maxsplit is given, at most maxsplit
 splits are done. If sep is not specified or is None, any
 whitespace string is a separator and empty strings are removed
 from the result.

The first line of the description reads: S.split([sep [,maxsplit]]) → list of
strings. In English, this tells us that for a string (S) we have a method (split) with a
first possible argument (a.k.a. thing we can pass), sep, and a second possible

Helpful Tools: type, dir, and help | 37

www.it-ebooks.info

http://www.it-ebooks.info/

argument, maxsplit. The square brackets ([]) around the argument names indicate
that they are optional, not mandatory. This method returns (->) a list of strings.

The following line reads: "Return a list of the words in the string S, using
sep as the delimiter string." sep is an argument passed to the split method
that is used as a separator. A delimiter is a character or series of characters used to
separate fields. For example, in a comma-delimited file, the comma is the delimiter.
The comma is also the delimiter in the string we created, as it separates the words we
want in our list.

Once you have finished reading documentation (using arrows to
scroll up and down), you can exit help by typing q.

The help description also tells us that spaces, or whitespace, are the default delimiter
if no other delimiter is specified. This tells us that if we had a string 'cat dog horse'
the split method would not require us to pass a delimiter inside the (). As you can
see, the built-in help method can teach you a lot about what a method expects you to
use and whether it’s a good fit for the problem you are solving.

Putting It All Together
Let’s test our new skills. Try the following:

1. Create a string, a list, and a dictionary.
2. Look up the possible methods of each of these data types using the dir method.
3. Try applying some of the built-in methods you discovered, until one throws an

error.
4. Look up the method documentation using help. Try to figure out what the

method does and what you might need to do differently to make it work.

Congrats! You just learned how to program. Programming is not about memorizing
everything; rather, it is about troubleshooting when things go awry.

What Does It All Mean?
At the beginning of the chapter, we promised that by the end you would understand
these three lines:

import sys
import pprint
pprint.pprint(sys.path)

38 | Chapter 2: Python Basics

www.it-ebooks.info

http://www.it-ebooks.info/

Knowing what we now know, let’s break it down. In “Floats, decimals, and other non–
whole number types” on page 20, we imported the decimal library. It looks like we
are importing some modules from the Python standard library here—sys and
pprint.

Let’s get some help on these. (Make sure you import them, or help will throw an
error!) Because pprint is an easier read, let’s look at that one first:

>>>import pprint
>>>help(pprint.pprint)

Help on function pprint in module pprint:

pprint(object, stream=None, indent=1, width=80, depth=None)
 Pretty-print a Python object to a stream [default is sys.stdout].

Excellent. According to the pprint.pprint() documentation, the method outputs an
easy-to-read display of whatever was passed to it.

As we learned in the previous chapter, sys.path shows where Python looks to find
modules. What kind of type is sys.path?

import sys
type(sys.path)

A list. We know how to use lists! We now also know if we pass a list to
pprint.pprint, it makes it look really nice. Let’s try to apply this to our list of lists
holding animal names. First, let’s add a few more names to make it really messy:

animal_names = [
 ['Walter', 'Ra', 'Fluffy', 'Killer'],
 ['Joker', 'Simon', 'Ellie', 'Lishka', 'Fido'],
 ['Mr. Ed', 'Peter', 'Rocket','Star']
]

Now, let’s pprint the variable animal_names:

pprint.pprint(animal_names)

What we get in return is the following:

[['Walter', 'Ra', 'Fluffy', 'Killer'],
 ['Joker', 'Simon', 'Ellie', 'Lishka', 'Fido'],
 ['Mr. Ed', 'Peter', 'Rocket', 'Star']]

To summarize, here is what each of those original lines of code does:

import sys
import pprint
pprint.pprint(sys.path)

Imports Python’s sys module

What Does It All Mean? | 39

www.it-ebooks.info

http://www.it-ebooks.info/

Imports Python’s pprint module

Passes sys.path, a list, to pprint.pprint so the list is displayed in a way that’s
clear and easy to read

If you pass a dictionary to pprint.pprint, what happens? You should see a well-
formatted dictionary output.

Summary
Data types and containers are how Python understands and stores data. There are
more types than the few core ones we learned about in this chapter, which are shown
in Table 2-1.

Table 2-1. Data types

Name Example

String 'Joker'

Integer 2

Float 2.0

Variable animal_names

List ['Joker', 'Simon', 'Ellie', 'Lishka', 'Fido']

Dictionary {'cats': 2, 'dogs': 5, 'horses': 1, 'snakes': 0}

As you know, some data types can be contained within others. A list can be a bunch
of strings or integers or a mixture of the two. A variable can be a list or a dictionary
or a string or a decimal. As we saw with our variable animal_names, a list can also be
a list of lists. As we gain more Python knowledge, we will learn more about these data
types, how they work and how we can utilize them for our data wrangling needs.

In this chapter, we also learned about built-in methods and things we can do with
objects in Python. Additionally, we learned some simple Python methods and tools
we can use to help figure out what kind of data type an object is and what we can do
with it. Table 2-2 summarizes these tools.

40 | Chapter 2: Python Basics

www.it-ebooks.info

http://www.it-ebooks.info/

Table 2-2. Helper tools

Example What it does

type(‘Joker’) Returns what kind of object ‘Joker’ is.

dir(‘Joker’) Returns a list of all the things the object ‘Joker’ can do (methods and properties).

help(‘Joker’.strip) Returns a description of a specific method (in this case, strip) so we can better understand how
to use it.

In the next chapter, we will learn how to open various file types and store data in the
Python data types we learned in this chapter. By converting our data from files into
Python objects, we can unleash the power of Python and data wrangling can soon
become an easy task.

Summary | 41

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3

Data Meant to Be Read by Machines

Data can be stored in many different formats and file types. Some formats store data
in a way easily handled by machines, while others store data in a way meant to be
easily readable by a human. Microsoft Word documents are an example of the latter,
while CSV, JSON, and XML are examples of the former. In this chapter, we will cover
how to read files easily handled by machines, and in Chapters 4 and Chapter 5 we will
cover files made for human consumption.

File formats that store data in a way easily understood by machines
are commonly referred to as machine readable. Common machine-
readable formats include the following:

• Comma-Separated Values (CSV)
• JavaScript Object Notation (JSON)
• Extensible Markup Language (XML)

In spoken and written language, these data formats are typically
referred to by their shorter names (e.g., CSV). We will be using
these acronyms.

When looking for data or requesting data from an organization or agency, the for‐
mats described in this chapter are your best available resource. They are more easily
used and ingested by your Python scripts than human-readable formats, and are usu‐
ally easy to find on data websites.

43

www.it-ebooks.info

http://www.it-ebooks.info/

Creating a Home for Your Code
To follow along with the examples and code in this chapter, you will need to save the
files locally on your machine. If you haven’t already, you should create a folder where
you are going to keep your Python code and data files. Call it something intuitive, like
data_wrangling. Then, create a subfolder inside that folder for code associated with
this book (e.g., code). It helps to keep your files organized and intuitively named.

If you follow this tip, you should end up with a folder like this: ~/Projects/data_wran‐
gling/code.

On Unix-based systems (Linux and Mac), the ~ symbol represents your home direc‐
tory for easy command-line access.

On Windows, the home directory is under Users, so your path will instead be C:\Users
\<your_name>\Projects\data_wrangling.

Go ahead and download the code examples from the book’s data repository and move
them into your project’s folder. As you follow along in the chapter, we will assume the
data from that repository is stored in the same folder where you are writing your
Python code. This way, we don’t have to worry about locating the files and can focus
instead on importing data with Python.

CSV Data
The first machine-readable file type we will learn about is CSV. CSV files, or CSVs for
short, are files that separate data columns with commas. The files themselves have
a .csv extension.

Another type of data, called tab-separated values (TSV) data, sometimes gets classi‐
fied with CSVs. TSVs differ only in that they separate data columns with tabs and not
commas. The files themselves usually have a .tsv extension, but sometimes have a .csv
extension. Essentially, .tsv and .csv files will act the same in Python.

If the file has a .tsv file extension, then it’s likely TSV data. If the file
has a .csv file extension, it’s probably CSV data, but it could be TSV
data. Make sure to open and view your file so you know what
you’re dealing with before you begin importing your data.

For our CSV sample in this chapter, we will look at data from the World Health Orga‐
nization (WHO). The WHO has a lot of great datasets in different formats. The one
selected for this example contains life expectancy rates worldwide by country. If you

44 | Chapter 3: Data Meant to Be Read by Machines

www.it-ebooks.info

https://github.com/jackiekazil/data-wrangling
http://apps.who.int/gho/data/node.main
http://www.it-ebooks.info/

1 To complete the exercises in this chapter, you will need a good text editor. If you haven’t already installed one,
follow the instructions in “Install a Code Editor” on page 15.

visit the web page for life expectany rates data, you will find a couple of different ver‐
sions of this dataset. For this example, we are using CSV (text only).

If you open the file in your text editor,1 you will see data holding rows containing the
values in Table 3-1.

Table 3-1. Two sample data recordsa

CSV headers Sampler rec 1 Sampler rec 2

Indicator Life expectancy at age 60 (years) Life expectancy at birth (years)

PUBLISH STATES Published Published

Year 1990 1990

WHO region Europe Americas

World Bank income group High-income Lower-middle-income

Country Czech Republic Belize

Sex Female Both sexes

Display Value 19 71

Numeric 19.00000 71.00000

Low no value no value

High no value no value

Comments no value no value

a Bold items are included in the sample data.

To make the data easier to read, a sample of the data with trimmed-down fields is
shown here. You should see something similar to this when you open the CSV file in
your text editor:

"Year", "Country","Sex","Display Value","Numeric"
"1990","Andorra","Both sexes","77","77.00000"
"2000","Andorra","Both sexes","80","80.00000"
"2012","Andorra","Female","28","28.00000"

CSV Data | 45

www.it-ebooks.info

http://bit.ly/life_expectancy_data
http://bit.ly/life_expectancy_csv
http://www.it-ebooks.info/

"2000","Andorra","Both sexes","23","23.00000"
"2012","United Arab Emirates","Female","78","78.00000"
"2000","Antigua and Barbuda","Male","72","72.00000"
"1990","Antigua and Barbuda","Male","17","17.00000"
"2012","Antigua and Barbuda","Both sexes","22","22.00000"
"2012","Australia","Male","81","81.00000"

Another way to preview the file is to open it in a spreadsheet program such as Excel
or Google Spreadsheets. Those programs will display each entry of data as a separate
row.

How to Import CSV Data
Now that we have learned a little bit about the data, let’s open the file in Python and
convert the data into a form Python can understand. This only takes a couple of lines
of code:

import csv

csvfile = open('data-text.csv', 'rb')
reader = csv.reader(csvfile)

for row in reader:
 print row

Let’s go through each line. In the previous chapter, we did all of our coding in the
Python interpreter, but as the code gets longer and more complicated, it is easier to
write and run code from a file. After we walk through this bit of code, we will save the
code to a .py file, which is a Python file, and run the file from the command line.

The first line of the script imports a library called csv:

import csv

A Python library is a package of code that provides functionality you can use in your
Python programs. The csv library we are importing comes with your Python installa‐
tion as part of the standard library (or stdlib). Once we import a library into our file,
we can use it. If we did not have this library, this script would be a lot longer—the csv
library gives us helper functions so we don’t have to write as much code to perform a
more complex task.

The second line of code takes our data-text.csv file, which should be located in the
same folder as the script, and passes it to the open function:

csvfile = open('data-text.csv', 'rb')

46 | Chapter 3: Data Meant to Be Read by Machines

www.it-ebooks.info

https://docs.python.org/3/library/csv.html
http://www.it-ebooks.info/

A function is a piece of code that performs a task when it is
invoked. It is very similar to the Python data type methods we
learned about in Chapter 2. Sometimes functions will take an input
(or inputs). These inputs are called arguments. The function per‐
forms an action based on the arguments. Sometimes functions also
return an output, which can then be stored or used.

open is a built-in function in Python, meaning the act of opening a file is so common
that the core Python contributors felt it should be added to every Python installation.
When we use the open function, we pass a filename as the first argument (here we
used 'data-text.csv') and then we optionally specify which mode this file should
be opened in (we used 'rb'). If you visit the docs for the open function, you will find
that the argument 'rb' means that we open the file as read-only and in binary mode.
Opening the file in binary mode allows our code to run on both Windows and Unix-
based operating systems. The other common mode is write ('w', or 'wb' for write in
binary mode).

If you want to read, open in read mode. If you intend to write,
open the file in write mode.

We store the output of this function in the variable csvfile. csvfile now holds an
open file as its value.

In the next line, we pass csvfile to the reader function in the csv module. This
function tells the csv module to read the open file as a CSV:

reader = csv.reader(csvfile)

The output of the function csv.reader(csvfile) is stored in the reader variable.
The reader variable now holds a Python CSV reader with the opened file. This CSV
reader allows us to easily view data from our file using simple Python commands. In
the last piece of code, we have something called a for loop.

A for loop is a way of iterating over Python objects, commonly used with lists. A for
loop tells Python code, “For each thing in this list of things, do something.” The first
word used after for in a for loop is the variable that will hold each object in the list
(or other iterable object). The code below the for loop uses that variable to perform
more functions or calculations on the item. For that reason, it is best to use a word
which conveys meaning, so you and others can easily read and understand the code.

CSV Data | 47

www.it-ebooks.info

https://docs.python.org/2/library/functions.html
https://docs.python.org/2/library/functions.html#open
http://www.it-ebooks.info/

Remember our invalid token error from Chapter 2? In Python, for
is another special token, and it can only be used for creating for
loops. Tokens help translate what we type in our interpreters or
scripts into something our computers can run and execute.

Try running the following example in your Python interpreter:

dogs = ['Joker', 'Simon', 'Ellie', 'Lishka', 'Fido']
for dog in dogs:
 print dog

With this for loop, we store each dog name in the for loop variable dog. For each of
the iterations of our for loop, we print out the dog’s name (held in the variable dog).
When the for loop has gone through each dog’s name (or item in the list), the code is
finished running.

Closing Indented Code Blocks in IPython
When writing for loops or other indented blocks in an IPython terminal, make sure
your prompt has returned from an indented block style ... to a new In prompt. The
easiest way to do this is to simply hit Return after you are finished entering your final
indented lines. You should see your prompt ask for another In before entering code
outside of your loop:

In [1]: dogs = ['Joker', 'Simon', 'Ellie', 'Lishka', 'Fido']

In [2]: for dog in dogs:

 ...: print dog

 ...:
Joker
Simon
Ellie
Lishka
Fido

In [3]:

IPython begins an auto-indented prompt (...: followed by four spaces).

Press Return on the blank line to close the indented block and execute the code.

A new prompt appears when IPython is done with the code.

In the case of the code we are using to read our CSV, our reader object is a Python
container holding the data rows. In our reader for loop, we hold each row of data in

48 | Chapter 3: Data Meant to Be Read by Machines

www.it-ebooks.info

http://www.it-ebooks.info/

the variable row. The next line states that for each row, we want Python to print the
row:

for row in reader:
 print row

Now that we can import and loop through our data, we can really begin to explore it.

Saving the Code to a File; Running from Command Line
As you are working on code as a developer, you will want to save even partial bits of
in-progress code to review and use later. If you are interrupted, being organized and
saving your code means you can seamlessly pick up where you left off.

Let’s save the file that has our code up to this point, and run it. The code should look
like this (if you haven’t already, open up your text editor, create a new file, and type
this code into it):

import csv

csvfile = open('data-text.csv', 'rb')
reader = csv.reader(csvfile)

for row in reader:
 print row

Pay attention to capitalization, spacing, and new lines. Your code
will not work if each line has different spacing or there are odd cap‐
itals. Write the code exactly as we have done, using four spaces to
indent lines. This is important because Python is case-sensitive and
uses indentation to indicate structure.

Save the code using your text editor as a .py (Python) file. The full filename should be
something like import_csv_data.py.

Put the data file data-text.csv in the same folder where you just saved your Python
file. If you want to put the file in another location, you will need to update the code
appropriately for your new file location.

Opening Files from Different Locations
In the current code, we pass the path of the file to the open function like this:

open('data-text.csv', 'rb')

However, if our code was in a subfolder called data, we would need to modify the
script to look there. That is, we would instead need to use:

open('data/data-text.csv', 'rb')

CSV Data | 49

www.it-ebooks.info

http://www.it-ebooks.info/

In the preceding example, we would have a file structure that looks like this:

data_wrangling/
`-- code/
 |-- import_csv_data.py
 `-- data/
 `-- data-text.csv

If you have trouble locating your file, open up your command line and use the follow‐
ing commands on your Mac or Linux machine to navigate through your folders:

• ls returns a list of files.
• pwd shows your current location.
• cd ../ moves to the parent folder.
• cd ../../ moves two levels up.
• cd data moves into a folder called data that is inside the folder you are currently

in (use ls to check!).

For more on navigating on the command line, including an entire section for Win‐
dows users, check out Appendix C.

After you save the file, you can run it using the command line. If you don’t already
have it open, open your command line (Terminal or cmd), and navigate to where the
file is located. Let’s assume that you put the file in ~/Projects/data_wrangling/code. To
navigate there using the Mac command line, you would use the change directory or
folder command (cd):

cd ~/Projects/data_wrangling/code

After you get to the right location, you can run the Python file. Up until this point, we
were running our code in the Python interpreter. We saved the file as
import_csv_data.py. To run a Python file from the command line, you simply type
python, a space, and then the name of the file. Let’s try running our import file:

python import_csv_data.py

Your output should look like a bunch of lists—something like the data shown here,
but with many more records:

['Healthy life expectancy (HALE) at birth (years)', 'Published', '2012',
 'Western Pacific', 'Lower-middle-income', 'Samoa', 'Female', '66',
 '66.00000', '', '', '']
['Healthy life expectancy (HALE) at birth (years)', 'Published', '2012',
 'Eastern Mediterranean', 'Low-income', 'Yemen', 'Both sexes', '54',
 '54.00000', '', '', '']
['Healthy life expectancy (HALE) at birth (years)', 'Published', '2000',
 'Africa', 'Upper-middle-income', 'South Africa', 'Male', '49', '49.00000',
 '', '', '']

50 | Chapter 3: Data Meant to Be Read by Machines

www.it-ebooks.info

http://www.it-ebooks.info/

['Healthy life expectancy (HALE) at birth (years)', 'Published', '2000',
 'Africa', 'Low-income', 'Zambia', 'Both sexes', '36', '36.00000', '', '', '']
['Healthy life expectancy (HALE) at birth (years)', 'Published', '2012',
 'Africa', 'Low-income', 'Zimbabwe', 'Female', '51', '51.00000', '', '', '']

Did you get this output? If not, stop for a minute to read the error you received. What
does it tell you about where you might have gone wrong? Take time to search for the
error and read a few ways people have fixed the same error. If you need extra help on
troubleshooting how to get past the error, take a look at Appendix E.

For a lot of our code from this point onward, we will do the work
in a code editor, save the file, and run it from the command line.
Your Python interpreter will still be a helpful tool to try out pieces
of code, but as code gets longer and more complex it becomes
harder to maintain in a code prompt.

With the current code we are writing, along with many other solutions we’ll write,
there are often many ways to solve a problem. csv.reader() returns each new line of
your file as a list of data and is an easy-to-understand solution when you begin. We
are going to modify our script slightly to make our list rows into dictionary rows.
This will make our data a little easier to read, compare, and understand as we explore
our dataset.

In your text editor, take line 4, reader = csv.reader(csvfile), and update it to
read reader = csv.DictReader(csvfile). Your code should now look like this:

import csv

csvfile = open('data-text.csv', 'rb')
reader = csv.DictReader(csvfile)

for row in reader:
 print row

When you run the file again after saving it, each record will be a dictionary. The keys
in the dictionary come from the first row of the CSV file. All the subsequent rows are
values. Here is an example row of output:

{
 'Indicator': 'Healthy life expectancy (HALE) at birth (years)',
 'Country': 'Zimbabwe',
 'Comments': '',
 'Display Value': '49',
 'World Bank income group': 'Low-income',
 'Numeric': '49.00000',
 'Sex': 'Female',
 'High': '',
 'Low': '',
 'Year': '2012',

CSV Data | 51

www.it-ebooks.info

http://www.it-ebooks.info/

 'WHO region': 'Africa',
 'PUBLISH STATES': 'Published'
}

At this point, we have successfully imported the CSV data into Python, meaning we
were able to get the data from the file into a usable format Python can understand
(dictionaries). Using a for loop helped us see the data so we could visually review it.
We were able to use two different readers from the csv library to see the data in both
a list and a dictionary form. We will be using this library again as we start exploring
and analyzing datasets. For now, let’s move on to importing JSON.

JSON Data
JSON data is one of the most commonly used formats for data transfers. It is prefer‐
red, because it is clean, easy to read, and easy to parse. It is also one of the most popu‐
lar data formats that websites use when transmitting data to the JavaScript on the
page. Many sites have JSON-enabled APIs, which we will review in Chapter 13. For
this section, we will continue using the worldwide life expectancy rates data. This data
is not in available in JSON form from the WHO, but we have created a JSON version
for the purposes of this book; it’s available in the code repository.

If a file has a .json file extension, then it’s probably JSON data. If it
has a .js file extension, it is probably JavaScript, but in some rare
cases it might be a poorly named JSON file.

If you open the JSON file in your code editor, you will see that each data record looks
a lot like a Python dictionary. There is a key and value for each row, separated by a :,
with each entry separated by a ,. There are also opening and closing curly braces
({}). Here is a sample record from the JSON file:

[
 {
 "Indicator":"Life expectancy at birth (years)",
 "PUBLISH STATES":"Published",
 "Year":1990,
 "WHO region":"Europe",
 "World Bank income group":"High-income",
 "Country":"Andorra",
 "Sex":"Both sexes",
 "Display Value":77,
 "Numeric":77.00000,
 "Low":"",
 "High":"",
 "Comments":""

52 | Chapter 3: Data Meant to Be Read by Machines

www.it-ebooks.info

https://github.com/jackiekazil/data-wrangling
http://www.it-ebooks.info/

 },
]

Depending on the formatting, sometimes a JSON file can look exactly like a dictio‐
nary. In this sample, each entry is a Python dictionary (defined by the { and }) and
those dictionaries are all held in a list, which is defined by the [and].

How to Import JSON Data
Importing a JSON file is even easier than importing a CSV file in Python. The follow‐
ing code will open, load, import, and print a JSON data file:

import json

json_data = open('data-text.json').read()

data = json.loads(json_data)

for item in data:
 print item

Imports the json Python library, which we will use to process the JSON.

Uses the built-in Python function open to open the file. The filename is data-
text.json (and this is the first argument for our open function). This line of code
calls the open file’s read method, which will read the file and store it in the
json_data variable.

Uses json.loads() to load JSON data into Python. The data variable catches the
output.

Iterates over the data using a for loop and prints each item, which will be the
output in this example.

If you run python import_json_data.py from the command line, the output will
show a dictionary for each record in the JSON file. It should look almost exactly like
the final CSV output. Remember to copy the data file into the folder or to change the
file path to reflect it’s location.

At the end of the CSV section, we learned how to save a file and run it from the com‐
mand line. With this example, let’s start with a blank file and build up to that.

For a quick overview:

1. Create a new file in your code editor.
2. Save it as import_json_data.py in the folder holding your code.

JSON Data | 53

www.it-ebooks.info

https://docs.python.org/2/library/json.html
http://www.it-ebooks.info/

3. Move (or save) the data file to the folder where you are storing your code. (Make
sure to rename the file so it matches the name you use in the code. The book uses
data-text.json.)

4. Go back to your code editor, which should still have the import_json_data.py file
open.

Let’s read through the code and compare it to the CSV import file. First, we import
Python’s built-in json library:

import json

Then we use the open function we are already familiar with to open the file data-
text.json and call the read method on the open file:

json_data = open('data-text.json').read()

In the CSV file, we did not call read. What is the difference? In the CSV example, we
opened the file in read-only mode, but in the JSON example, we are reading the con‐
tents of the file into our json_data variable. In the CSV example, the open function
returns an object that is a file, but in the JSON example, we first open and then read
the file, so we have a str (string). This difference is based on the fact that the Python
json and csv libraries handle input in different ways. If you tried to pass a string into
the CSV reader, it would throw an error, and the JSON loads function would throw
an error if you passed it a file.

The good news is that Python makes it easy to write a string to a file (e.g., if you
needed to use the CSV reader but only had a string), and it’s also easy to read a file
into a string. To Python, a closed file is just a filename string waiting to be opened
and read. Getting data from a file, reading it into a string, and passing that string to a
function requires just a few lines of Python code.

From the folder where you have the JSON file stored, you can type
the following into your Python interpreter and see what kind of
object type each version outputs:

filename = 'data-text.json'
type(open(filename, 'rb')) # similar to csv code
type(open(filename).read()) # similar to json code

The Python json library’s loads function expects a string, not a file. The Python csv
library’s reader function expects an open file. In the next line of our script, we will
use the loads function, which loads a JSON string into Python. The output of this
function is assigned to a variable called data:

data = json.loads(json_data)

54 | Chapter 3: Data Meant to Be Read by Machines

www.it-ebooks.info

http://www.it-ebooks.info/

To preview our data, we iterate over each item and print it out. This isn’t necessary for
our code, but it helps us preview the data and make sure it’s in the proper form:

for item in data:
 print item

Once you are done writing your file you can save and run it. As you can see, opening
and converting a JSON file to a list of dictionaries in Python is quite easy. In the next
section, we will explore more customized file handling.

XML Data
XML is often formatted to be both human and machine readable. However, the CSV
and JSON examples were a lot easier to preview and understand than the XML file
for this dataset. Luckily for us, the data is the same, so we are familiar with it. Down‐
load and save the XML version of the life expectancy rates data in the folder where
you are saving content associated with this chapter.

If a file has an .xml file extension, then it’s XML data. If it has
an .html or .xhtml file extension, it can sometimes be parsed using
XML parsers.

As we do with all of our data, let’s open the file in a code editor to preview it. If you
scroll through the file, you will see the familiar data we covered in the CSV example.
The data looks different, though, because it’s presented in XML format, using things
called tags.

XML is a markup language, which means it has a document struc‐
ture that contains formatted data. XML documents are essentially
just specially formatted data files.

The following snippet is a sampling of the XML data we are working with. In this
example, <Observation />, <Dim />, and <Display /> are all examples of tags. Tags
(or nodes) store data in a hierarchical and structured way:

<GHO ...>
 <Data>
 <Observation FactID="4543040" Published="true"
 Dataset="CYCU" EffectiveDate="2014-03-27" EndDate="2900-12-31">
 <Dim Category="COUNTRY" Code="SOM"/>
 <Dim Category="REGION" Code="EMR"/>
 <Dim Category="WORLDBANKINCOMEGROUP" Code="WB_LI"/>
 <Dim Category="GHO" Code="WHOSIS_000002"/>

XML Data | 55

www.it-ebooks.info

http://bit.ly/life_expectancy_xml
http://bit.ly/life_expectancy_data
http://www.it-ebooks.info/

 <Dim Category="YEAR" Code="2012"/>
 <Dim Category="SEX" Code="FMLE"/>
 <Dim Category="PUBLISHSTATE" Code="PUBLISHED"/>
 <Value Numeric="46.00000">
 <Display>46</Display>
 </Value>
 </Observation>
 <Observation FactID="4209598" Published="true"
 Dataset="CYCU" EffectiveDate="2014-03-25" EndDate="2900-12-31">
 <Dim Category="WORLDBANKINCOMEGROUP" Code="WB_HI"/>
 <Dim Category="YEAR" Code="2000"/>
 <Dim Category="SEX" Code="BTSX"/>
 <Dim Category="COUNTRY" Code="AND"/>
 <Dim Category="REGION" Code="EUR"/>
 <Dim Category="GHO" Code="WHOSIS_000001"/>
 <Dim Category="PUBLISHSTATE" Code="PUBLISHED"/>
 <Value Numeric="80.00000">
 <Display>80</Display>
 </Value>
 </Observation>
 </Data>
</GHO>

Data values can be stored in two places in an XML file: either in between two tags, as
in <Display>46</Display>, where the value for the <Display> tag is 46; or as an
attribute of a tag, as in <Dim Category="COUNTRY" Code="SOM"/>, where the value of
the Category attribute is "COUNTRY" and the value of the Code attribute is "SOM". XML
attributes store extra information for a particular tag, nested inside a single tag.

Whereas in JSON you might store data in key/value pairs, in XML you can store data
in pairs or groups of threes or fours. The XML tags and attributes hold data, similar
to the JSON keys. So when we look again at the Display tag, the value for that tag is
held within the opening and closing portions of the tag. When we view the Dim node,
we see it has two different attributes with values (Category and Code). XML format‐
ting allows us to store more than one attribute in each node. For those of you familiar
with HTML, this should look familiar. That’s because HTML is closely related to
XML; they both carry attributes inside nodes (or tags), and they are both Markup lan‐
guages.

Although there are some well-known standards for forming XML
tags and naming attributes, much of the structure is dictated by the
person (or machine) who designs or creates the XML. You can
never assume consistency if you’re using datasets from different
sources. For more reading on XML best practices, IBM has pro‐
vided some great talking points.

56 | Chapter 3: Data Meant to Be Read by Machines

www.it-ebooks.info

https://en.wikipedia.org/wiki/Markup_language
https://en.wikipedia.org/wiki/Markup_language
http://bit.ly/elements_v_attributes
http://bit.ly/elements_v_attributes
http://www.it-ebooks.info/

How to Import XML Data
Because we have an understanding of the data, let’s import the file into a usable form
for Python. To get the data out of XML form and into Python, we will write the fol‐
lowing code:

from xml.etree import ElementTree as ET

tree = ET.parse('data-text.xml')
root = tree.getroot()

data = root.find('Data')

all_data = []

for observation in data:
 record = {}
 for item in observation:

 lookup_key = item.attrib.keys()[0]

 if lookup_key == 'Numeric':
 rec_key = 'NUMERIC'
 rec_value = item.attrib['Numeric']
 else:
 rec_key = item.attrib[lookup_key]
 rec_value = item.attrib['Code']

 record[rec_key] = rec_value

 all_data.append(record)

print all_data

As you can see, this is a little more complicated than the CSV and JSON examples.

Let’s take a closer look. Create a new file in your code editor and save it to the folder
where you have been putting your code. Name it import_xml_data.py. Also, if you
downloaded the data directly from the WHO site and not the book’s repository,
rename the saved XML file data-text.xml and put it in the same folder as your new
code.

First, let’s import ElementTree, part of the built-in library we are going to use to parse
the XML:

from xml.etree import ElementTree as ET

XML Data | 57

www.it-ebooks.info

http://bit.ly/elementtree_api
http://www.it-ebooks.info/

2 When using Python objects with a longer numeric and hex string, this is Python’s way of showing memory
address information. It’s not necessary for our data wrangling needs so please ignore it if your memory
addresses don’t look like ours.

As mentioned earlier, there are often multiple solutions to a prob‐
lem. While we use ElementTree in this example, there is another
library you could use called lxml, and yet another called minidom.
Because all three of these solutions can be used to solve the same
problem, if you find a good example using one of the libraries, we
encourage you to explore the data using another library as well. As
you learn Python, choose libraries that seem easiest for you to
understand (it just so happens that in many cases these are the best
choices).

This import statement has an extra component we did not have last time: as ET. We
are importing ElementTree, but will refer to it as ET. Why? Because we are lazy and
do not want to type out ElementTree every time we want to use the library. This is a
common practice when importing classes or functions with long names, but it is not
mandatory. The as tells Python we want to use ET to represent ElementTree.

Next, we call the parse method on the ET class, which will parse data from the file‐
name we pass. Because we are parsing a file located in the same folder, the filename
needs no file path:

tree = ET.parse('data-text.xml')

The parse method returns a Python object people normally store in a variable tree.
When talking about XML, the tree is the whole XML object stored in a way Python
can understand and parse.

To understand how to traverse the tree (and data contained therein), we begin at the
root of the tree. The root is the first XML tag. To start at the root of the tree, we call
the getroot function:

root = tree.getroot()

If you were to take a moment to print out root by adding print root after the previ‐
ous statement, you would find it prints out the Python representation of the root ele‐
ment in the XML tree (it should look like <Element 'GHO' at 0x1079e79d0>2). From
this representation, we can quickly tell ElementTree identified the root or outermost
tag of the XML document as an XML node with a tag name GHO.

Now that we’ve identified the root, we need to figure out how to access the data we
want. After analyzing the data in this chapter’s CSV and JSON sections, we know
what data we’d like to review. We need to traverse the XML tree and extract that same

58 | Chapter 3: Data Meant to Be Read by Machines

www.it-ebooks.info

http://lxml.de/
http://bit.ly/minimal_dom
http://www.it-ebooks.info/

data. In order to understand what we’re looking for, we need to understand the over‐
all structure and format of the XML tree. Here, we’ve slimmed down the XML file we
are using and removed the data, so we can view just the core structure:

<GHO>
 <Data>
 <Observation>
 <Dim />
 <Dim />
 <Dim />
 <Dim />
 <Dim />
 <Dim />
 <Value>
 <Display>
 </Display>
 </Value>
 </Observation>
 <Observation>
 <Dim />
 <Dim />
 <Dim />
 <Dim />
 <Dim />
 <Dim />
 <Value>
 <Display>
 </Display>
 </Value>
 </Observation>
 </Data>
</GHO>

In reviewing this structure, we can see each “row” of data is held in an Observation
tag. The data for each of these rows is then held in the Dim, Value, and Display nodes
within each Observation node.

So far we have three lines of code. To investigate how we can use Python to extract
these nodes, let’s add print dir(root) to the end of our current code, then save the
file and run it on the command line:

python import_xml_data.py

You will see all the methods and properties of the root variable. Your code should
look like this:

from xml.etree import ElementTree as ET

tree = ET.parse('data-text.xml')
root = tree.getroot()

print dir(root)

XML Data | 59

www.it-ebooks.info

http://www.it-ebooks.info/

When you run the file, you should see this output:

['__class__', '__delattr__', '__delitem__', '__dict__', '__doc__',
'__format__', '__getattribute__', '__getitem__', '__hash__', '__init__',
'__len__', '__module__', '__new__', '__nonzero__', '__reduce__',
'__reduce_ex__', '__repr__', '__setattr__', '__setitem__', '__sizeof__',
'__str__', '__subclasshook__', '__weakref__', '_children', 'append', 'attrib',
'clear', 'copy', 'extend', 'find', 'findall', 'findtext', 'get',
'getchildren', 'getiterator', 'insert', 'items', 'iter', 'iterfind',
'itertext', 'keys', 'makeelement', 'remove', 'set', 'tag', 'tail', 'text']

Let’s assume our file is too large for us to open, and that we don’t know the structure
of the file. This is often the case with larger XML datasets. What can we do? Let’s start
by calling dir(root) to review the root object’s methods. We notice the getchildren
method as a potential solution for seeing children in the Observation nodes. After
reading the latest documentation and a question on Stack Overflow, we find the
getchildren method will return the subelements, but the method has been depre‐
cated. When a method you want to use is or will soon become deprecated, you should
attempt to use what the authors of the library suggest as a replacement.

When a method, class, or function is deprecated, it means this func‐
tionality will likely be removed from future releases of the library
or module. For this reason, you should always avoid using depre‐
cated methods or classes and make sure you read through the doc‐
umentation, as the authors have likely recommended what to use
going forward.

Based on what the documentation is recommending, if we want to view subelements
for the root tree, we should use list(root). If we have a very large file, returning
direct subelements will give us a view of the data and its structure, without over‐
whelming us with too many lines of output. Let’s try that.

Replace this line:

print dir(root)

with this line:

print list(root)

Run the file again from your command line. You should end up with the following
output, which is a list of Element objects (for our purposes, elements are XML nodes):

[<Element 'QueryParameter' at 0x101bfd290>,
<Element 'QueryParameter' at 0x101bfd350>,
<Element 'QueryParameter' at 0x101bfd410>,
<Element 'QueryParameter' at 0x101bfd590>,
<Element 'QueryParameter' at 0x101bfd610>,
<Element 'QueryParameter' at 0x101bfd650>,
<Element 'Copyright' at 0x101bfd690>,

60 | Chapter 3: Data Meant to Be Read by Machines

www.it-ebooks.info

http://bit.ly/getchildren
http://bit.ly/get_subelements
http://www.it-ebooks.info/

<Element 'Disclaimer' at 0x101bfd710>,
<Element 'Metadata' at 0x101bfd790>,
<Element 'Data' at 0x102540250>]

The list contains Element objects called QueryParameter, Copyright, Disclaimer,
Metadata, and Data. We can traverse these elements and explore the contents so we
better understand how to extract the data we are after.

When searching for data stored in an XML tree, the Data element is likely a good
place to start. Now we have found the Data element, and we can focus on that subele‐
ment. There are a couple of ways to get the Data element, but we will use the find
method. The root element’s find method allows us to search for a subelement using
the tag name. Then, we will get the Element’s children and see what we should do
next.

Replace this line:

print list(root)

with this:

data = root.find('Data')

print list(data)

There is also a findall method we could use. The difference
between find and findall is that find will return the first match‐
ing element, while findall will return all of the matching ele‐
ments. We know there is only one Data Element, so we can use
find instead of findall. If there was more than one Element, we
would want to use the findall method to get the whole list of
matching elements and iterate over them.

When you rerun your file with the new lines of code, you will see a dizzying output of
a list of Observation elements. These are our data points. Although there is a lot of
information output, you can tell it is a list because the last character is a], which
symbolizes the end of a list.

Let’s iterate over the list of data. Each Observation represents a row of data, so they
should have more information contained inside. We can iterate over those elements
individually to see what subelements exist. With a Python Element objects, we can
iterate over all of the subelements similar to how we would a list. Therefore, we can
iterate over each Observation and iterate over each subelement in the Observation
elements. This is our first time using a loop within a loop, and it should show us
whether there are more subelements we can use to extract data.

XML Data | 61

www.it-ebooks.info

http://www.it-ebooks.info/

Because XML stores data in nodes, subnodes, and attributes, you’ll
often want to take the approach of exploring each node and sub‐
node (or element and subelement) until you get a good idea of not
only how the data is structured but also how Python sees the data.

Replace this line:

print list(data)

with these lines:

for observation in data:
 for item in observation:
 print item

and rerun the file.

The output is a bunch of Dim and Value objects. Let’s try a couple of different ways to
explore what might be contained in these elements. There are a few ways you can
view data within Python’s Element object. One of the attributes of every Element
node is text, which displays the text contained inside the node.

Replace this line:

print item

with this line:

print item.text

and rerun the file.

What happened? You should have gotten a lot of None values back. This is because
item.text does not exist for those elements because there is no text between the ele‐
ments’ tags. Look at how <Dim /> is structured in the data samples. For example:

<Dim Category="YEAR" Code="2000"/>

In Python, item.text is only useful if your elements are structured with text in the
nodes, like the following:

<Dim Category="YEAR">2000</Dim>

For the second example, item.text returns 2000.

XML data can be structured in many different ways. The information we need is loca‐
ted in the XML; it just wasn’t in the first place we looked. Let’s continue to explore.

Another place to look is in child elements. Child elements are subelements of a parent
element. Let’s check if we have any child elements. Replace this line:

print item.text

62 | Chapter 3: Data Meant to Be Read by Machines

www.it-ebooks.info

http://www.it-ebooks.info/

with this line:

print list(item)

When you rerun the code with that change, the output shows that some (but not all)
elements have children. That’s interesting! These are actually Value elements. Look at
how these are structured in the data sample:

<Value>
 <Display>
 </Display>
</Value>

If we want to explore those child elements, we’ll need another loop similar to the loop
we wrote to go through the items in each Observation.

There is another method we can call for each Element object in Python, called
attrib, which returns the attributes for each node. As we know from reviewing XML
structure, if nodes don’t have values between the tags, they usually have attributes
within the tags.

To see what attributes we have in our nodes, replace:

print list(item)

with this line:

print item.attrib

When we rerun the code, we see the data contained in the attributes output as a
bunch of dictionaries. Rather than storing each element and the attributes in separate
dictionaries, we want each full row of data in a dictionary together. Here is one record
from our attrib output:

{'Category': 'PUBLISHSTATE', 'Code': 'PUBLISHED'}
{'Category': 'COUNTRY', 'Code': 'ZWE'}
{'Category': 'WORLDBANKINCOMEGROUP', 'Code': 'WB_LI'}
{'Category': 'YEAR', 'Code': '2012'}
{'Category': 'SEX', 'Code': 'BTSX'}
{'Category': 'GHO', 'Code': 'WHOSIS_000002'}
{'Category': 'REGION', 'Code': 'AFR'}
{'Numeric': '49.00000'}

Because we ended up with a dictionary for every record in our CSV example, let’s try
to put this output in a similar form. The keys in our XML data dictionary will be
slightly different, because the WHO does not provide the same data in the XML data‐
set as in the CSV dataset. We will work to get our data in the following form, but
ignore the difference in key names. Ultimately, this will not affect how we use the
data.

Just to remind you, here is a sample record from the CSV reader:

XML Data | 63

www.it-ebooks.info

http://www.it-ebooks.info/

{
 'Indicator': 'Healthy life expectancy (HALE) at birth (years)',
 'Country': 'Zimbabwe',
 'Comments': '',
 'Display Value': '51',
 'World Bank income group': 'Low-income',
 'Numeric': '51.00000',
 'Sex': 'Female',
 'High': '',
 'Low': '',
 'Year': '2012',
 'WHO region': 'Africa',
 'PUBLISH STATES': 'Published'
}

Here is the goal for a sample record using our XML data. We aim to have it in this
format by the time we are done parsing our XML tree:

{
 'COUNTRY': 'ZWE',
 'GHO': 'WHOSIS_000002',
 'Numeric': '49.00000',
 'PUBLISHSTATE': 'PUBLISHED',
 'REGION': 'AFR',
 'SEX': 'BTSX',
 'WORLDBANKINCOMEGROUP': 'WB_LI',
 'YEAR': '2012'
 }

Notice the High and Low fields are missing. If they existed in our XML dataset, we
would add them to the keys of our new dictionary. The Display Value is also miss‐
ing. We decided not to include it, as it’s the same as the Numeric value.

Currently, your code should look like this:

from xml.etree import ElementTree as ET

tree = ET.parse('data-text.xml')
root = tree.getroot()

data = root.find('Data')

for observation in data:
 for item in observation:
 print item.attrib

To create the data structure, we need to first create an empty dictionary for each
record. We will use this dictionary to add keys and values, then we will append each
record to a list, so we have a final list of all of our records (similar to our CSV data).

64 | Chapter 3: Data Meant to Be Read by Machines

www.it-ebooks.info

http://www.it-ebooks.info/

Let’s add our empty dictionary and an empty list to hold our data in. Add all_data =
[] on a new line above the outer for loop and record = {} as the first line in the for
loop, like so:

all_data = []

for observation in data:
 record = {}
 for item in observation:
 print item.attrib

Now we need to figure out what our key and values are for each line and add them to
our record’s dictionary. For each attrib call, we get a dictionary with one or more
value and key combinations returned, like this:

{'Category': 'YEAR', 'Code': '2012'}

It looks like the value of the Category key (here, YEAR) should be the key for our dic‐
tionary, and the value of Code (here, 2012) should be set as the value for that key. As
you’ll recall from Chapter 2, a dictionary key should be easily used for lookup (like
YEAR) and dictionary value should contain the value associated with that key (like
2012). With that knowledge, the preceding line would become:

'YEAR': '2012'

Update print item.attrib to print item.attrib.keys() in your code, then rerun
it:

for item in observation:
 print item.attrib.keys()

It will output the keys of each attribute dictionary. We want to check the keys so we
can form the keys and values of the new item dictionary. We end up with two differ‐
ent outputs: ['Category', 'Code'] and ['Numeric']. Let’s tackle one at a time.
Based on our initial investigation, for the elements with both Category and Code, we
know we need to use the Category values as keys and the Code values as values.

To do this, add [0] to the end of item.attrib.keys():

for item in observation:
 lookup_key = item.attrib.keys()[0]
 print lookup_key

This is called indexing. It will return the first item in the list.

XML Data | 65

www.it-ebooks.info

http://www.it-ebooks.info/

Working with List Indexes
Indexing a list or other iterable object in Python means you are taking the nth object
from that list. In Python, indexing begins with a 0, meaning that the first item is num‐
bered 0, the second item uses 1, and so on. Because our dictionary has either one or
two items and we want to grab the first item, we add [0].

Take our dog example from the previous chapter:

dog_names = ['Joker', 'Simon', 'Ellie', 'Lishka', 'Fido']

If you want to pull out Ellie from the list, then you want the third item in the list.
Because the index count starts at 0, you would pull this item out in the following way:

dog_names[2]

Try this in your Python interpreter, then try to pull out Simon. What happens if you
put a negative number as the index? (Hint: a negative index counts backwards!)

If we rerun the code and look at the output, we now have the following:

Category
Category
Category
Category
Category
Category
Category
Numeric

Now that we have the key names, we can look up the values. We need the values of
the Category key to use as the keys in our new dictionary. Update the inner for loop
by creating a new variable, rec_key, which stores the value returned from
item.attrib[lookup_key]:

for item in observation:
 lookup_key = item.attrib.keys()[0]
 rec_key = item.attrib[lookup_key]
 print rec_key

With these updates, rerun the code from your command line. For each record, we get
the following values:

PUBLISHSTATE
COUNTRY
WORLDBANKINCOMEGROUP
YEAR
SEX
GHO

66 | Chapter 3: Data Meant to Be Read by Machines

www.it-ebooks.info

http://www.it-ebooks.info/

REGION
49.00000

These all look like great keys for our new dictionary, except for the last one. This is
because the last element is a Numeric dictionary instead of the Category ones we have
been working with. If we want to retain that data for our use, we need to set up a
special case for those numeric elements using an if statement.

Python’s if Statement
In its most basic form, the if statement is a way to control the flow of your code.
When you use an if statement, you are telling the code: if this condition is met, then
do something particular.

Another way to use if is followed with an else. An if-else statement says: if the
first condition is met, then do something, but if it is not, then do what is in the else
statement.

Besides if and if-else, you will see == as a comparison operator. While = sets a vari‐
able equal to a value, == tests to see if two values are equal. In addition, != tests to see
if they are not equal. Both of these operators return Boolean values: True or False.

Try the following examples in your Python interpreter:

x = 5

if x == 5:
 print 'x is equal to 5.'

What did you see? x == 5 will return True, and so the text will have printed. Now try:

x = 3

if x == 5:
 print 'x is equal to 5.'
else:
 print 'x is not equal to 5.'

Because x equals 3 and not 5 in this example, you should have received the print
statement in the else block of code. You can use if and if-else statements in
Python to help guide the logic and flow of your code.

We want to see when lookup_key is equal to Numeric, and use Numeric as the key
instead of the value (like we did with the Category keys). Update your code with the
following:

for item in observation:

 lookup_key = item.attrib.keys()[0]

XML Data | 67

www.it-ebooks.info

http://www.it-ebooks.info/

 if lookup_key == 'Numeric':
 rec_key = 'NUMERIC'
 else:
 rec_key = item.attrib[lookup_key]

 print rec_key

If you run your updated code, all of your keys should now look like keys. Now, let’s
pull out the values we want to store in our new dictionary and associate them with
those keys. In the case of Numeric, it’s simple, because we just want the Numeric key’s
value. Make the following changes to your code:

 if lookup_key == 'Numeric':
 rec_key = 'NUMERIC'
 rec_value = item.attrib['Numeric']
 else:
 rec_key = item.attrib[lookup_key]
 rec_value = None

 print rec_key, rec_value

If you run the updated code, you will see the rec_value for Numeric is properly
matched. For example:

NUMERIC 49.00000

For all other values, we set the rec_value to None. In Python, None is used to repre‐
sent a null value. Let’s populate those with real values. Remember each record has a
Category and a Code key, like so: {'Category': 'YEAR', 'Code': '2012'}. For
these elements, we want to store the Code value as the rec_value. Update the line
rec_value = None, so your if-else statement looks like the one shown here:

 if lookup_key == 'Numeric':
 rec_key = 'NUMERIC'
 rec_value = item.attrib['Numeric']
 else:
 rec_key = item.attrib[lookup_key]
 rec_value = item.attrib['Code']

 print rec_key, rec_value

Rerun the code, and you should now see that we have values for our rec_key and our
rec_value. Let’s build the dictionary:

 if lookup_key == 'Numeric':
 rec_key = 'NUMERIC'
 rec_value = item.attrib['Numeric']
 else:
 rec_key = item.attrib[lookup_key]
 rec_value = item.attrib['Code']

68 | Chapter 3: Data Meant to Be Read by Machines

www.it-ebooks.info

http://www.it-ebooks.info/

 record[rec_key] = rec_value

Adds each key and value to the record dictionary.

We also need to add each record to our all_data list. As we saw in “List Methods:
Things Lists Can Do” on page 32, we can use the list’s append method to add values to
our list. We need to append each record at the end of the outer for loop, as that is
when it will have all of the keys for each of the subelements. Finally, we will add a
print at the end of the file, to show our data.

Your full code to transform the XML tree to a dictionary should look like this:

from xml.etree import ElementTree as ET

tree = ET.parse('data-text.xml')
root = tree.getroot()

data = root.find('Data')

all_data = []

for observation in data:
 record = {}
 for item in observation:

 lookup_key = item.attrib.keys()[0]

 if lookup_key == 'Numeric':
 rec_key = 'NUMERIC'
 rec_value = item.attrib['Numeric']
 else:
 rec_key = item.attrib[lookup_key]
 rec_value = item.attrib['Code']

 record[rec_key] = rec_value

 all_data.append(record)

print all_data

Once you run the code, you will see a long list with a dictionary for each record, just
like in the CSV example:

{'COUNTRY': 'ZWE', 'REGION': 'AFR', 'WORLDBANKINCOMEGROUP': 'WB_LI',
'NUMERIC': '49.00000', 'SEX': 'BTSX', 'YEAR': '2012',
'PUBLISHSTATE': 'PUBLISHED', 'GHO': 'WHOSIS_000002'}

As you can see, extracting data from the XML was a little more complicated. Some‐
times CSV and JSON files won’t be as easy to process as they were in this chapter, but
they are usually more easily processed than XML files. However, looking at the XML

XML Data | 69

www.it-ebooks.info

http://www.it-ebooks.info/

data allowed you to explore and grow as a Python developer, giving you a chance to
create empty lists and dictionaries and populate them with data. You also honed your
debugging skills as you explored how to extract data from the XML tree structure.
These are valuable lessons in your quest to become a better data wrangler.

Summary
Being able to handle machine-readable data formats with Python is one of the must-
have skills for a data wrangler. In this chapter, we covered the CSV, JSON, and XML
file types. Table 3-2 provides a reminder of the libraries we used to import and
manipulate the different files containing the WHO data.

Table 3-2. File types and file extensions

File type File extensions Python library

CSV, TSV .csv, .tsv csv

JSON .json, .js json

We also covered a few new Python concepts. At this point, you should know how to
run Python code from the Python interpreter and how to save the code to a new file
and run it from the command line. We also learned about importing files using
import, and how to read and open files with Python on your local filesystem.

Other new programming concepts we covered include using for loops to iterate over
files, lists, or trees and using if-else statements to determine whether a certain con‐
dition has been met and to do something depending on that evaluation. Table 3-3
summarizes those new functions and code logic you learned about here.

Table 3-3. New Python programming concepts

Concept Purpose

import Imports a module into the Python space

open Built-in function that opens a file in Python on your system

for loop A piece of code that runs n times

if-else statement Runs a piece of code if a certain condition is met

== (equal to operator) Tests to see if one value is equal to another

Indexing a sequence Pulls out the nth object in the sequence (string, list, etc.)

70 | Chapter 3: Data Meant to Be Read by Machines

www.it-ebooks.info

https://docs.python.org/2/library/csv.html
https://docs.python.org/2/library/json.html
http://bit.ly/python_import
http://bit.ly/python_open
http://bit.ly/basic_for_loops
http://bit.ly/simple_if_statements
http://bit.ly/python_comparisons
http://bit.ly/python_sequence_types
http://www.it-ebooks.info/

Lastly, in this chapter we started to create and save a lot of code files and data files.
Assuming you did all the exercises in this chapter, you should have three code files
and three data files. Earlier in the chapter, there was a recommendation for how to
organize your code. If you have not done this already, do it now. Here is one example
of how to organize your data so far:

data_wrangling/
 code/
 ch3_easy_data/
 import_csv_data.py
 import_xml_data.py
 import_json_data.py
 data-text.csv
 data-text.xml
 data-json.json
 ch4_hard_data/
 ...

Now, on to harder data formats!

Summary | 71

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4

Working with Excel Files

Unlike the previous chapter’s data, not all the data in this and the following chapter
will easily import into Python without a little work. This is because some data formats
were made to be machine readable, while others, such as the ones we’ll look at next,
were meant to be interacted with through desktop tools. In this chapter and the next,
we will look at two example file types—Excel files and PDFs—and provide some
generic instructions to follow if you encounter a different file type.

So far in this book, the solutions you’ve learned about for importing data have been
pretty standard. In this chapter, we will begin to learn about processes which will vary
greatly each time you perform them. Although the processes are more difficult, the
end goal is the same: to extract the useful information and put it into a usable format
in Python.

The examples we use in this chapter and the next contain data from UNICEF’s 2014
report on The State of the World’s Children. The data is available in PDF and Excel
format.

When you have to extract data from files in these more difficult formats, you might
think there is someone out there who hates you, because it can be painful. We assure
you in most cases, the person who generated the file with the data inside simply did
not identify the importance of also releasing it in a machine-readable format.

Installing Python Packages
Before we can continue, we need to learn how to install external Python packages (or
libraries). Up until this point, we were using Python libraries that came standard with
Python when you installed it. Do you remember importing the csv and json pack‐
ages in Chapter 3? Those were packages in the standard library—they came with your
Python installation.

73

www.it-ebooks.info

http://www.unicef.org/sowc2014/numbers/
http://www.it-ebooks.info/

Python comes with a set of frequently used libraries. Because many libraries serve a
niche purpose, you have to explicitly install them. This is so your computer doesn’t
get bloated with every Python library available.

Python packages are collected in an online directory called PyPI, which stores the
packages along with their metadata and any documentation.

In this chapter, we are looking at Excel files. If you visit PyPI in your browser, you can
search for libraries relating to Excel and see lists of matching package results you can
download. This is one way to explore which package you should use.

We will be using pip from this point forward to install packages. There are multiple
ways to install pip, and you should have already done so in Chapter 1 of this book.

First, we will be evaluating Excel data. Let’s install the package to do that— xlrd. To
install the package, we use pip in the following way:

pip install xlrd

To remove the package, we would run the uninstall command:

pip uninstall xlrd

Try installing, uninstalling, and then reinstalling xlrd. It’s good to get a handle on the
pip commands, as you’ll be using them throughout this book and your data wran‐
gling career.

Why did we choose xlrd when there are many possible packages? Choosing a Python
library is an imperfect process. There are different ways to go about your selection.
Don’t worry about trying to figure out what is the right library. When you are perfect‐
ing your skills and you find a couple of options, use the library that makes sense to
you.

The first thing we recommend is searching the Web to see which libraries other peo‐
ple recommend. If you search for “parse excel using python”, you will find the xlrd
library surfaces at the top of the search results.

However, the answer is not always obvious. In Chapter 13, we will learn more about
the selection process when looking into Twitter libraries.

74 | Chapter 4: Working with Excel Files

www.it-ebooks.info

https://pypi.python.org/pypi
http://bit.ly/excel_packages
http://bit.ly/install_pip
https://pypi.python.org/pypi/xlrd/0.9.3
http://bit.ly/parse_excel_using_python
http://www.it-ebooks.info/

Parsing Excel Files
Sometimes the easiest way to extract data from an Excel sheet is finding a better way
to get the data. There are times when parsing is not the answer. Before you start pars‐
ing, ask yourself the following questions:

• Have you tried to find the data in another form? Sometimes other forms might
be available from the same source.

• Have you tried to use a phone to figure out if the data is available in another
form? Check out Chapter 6 for more tips.

• Have you tried to export the tab or tabs into CSV form from Excel (or your docu‐
ment reader)? This is a good solution if you only have a couple of tabs of data or
isolated data in one tab on the Excel sheet.

If you have exhausted these options and you still don’t have the data you need, you’ll
need to use Python to parse your Excel file.

Getting Started with Parsing
The library we identified for parsing Excel files is xlrd. This library is part of a series
of libraries for working with Excel files in Python.

There are three main libraries for handling Excel files:

xlrd

Reads Excel files

xlwt

Writes and formats Excel files

xlutils

A set of tools for more advanced operations in Excel (requires xlrd and xlwt)

You’ll need to install each separately if you want to use them; however, in this chapter
we will only use xlrd. Because we want to read Excel files into Python, you’ll need to
make sure you have xlrd installed before continuing:

pip install xlrd

If you get the following error, that means you don’t have pip
installed:

-bash: pip: command not found

For installation instructions, refer to “Install pip” on page 14 or
https://pip.pypa.io/en/latest/installing/.

Parsing Excel Files | 75

www.it-ebooks.info

http://www.python-excel.org/
https://pip.pypa.io/en/latest/installing/
http://www.it-ebooks.info/

Set up your work environment for this Excel file by doing the following (or some‐
thing like it, depending on your organizational system):

1. Create a folder for your Excel work.
2. Create a new Python file called parse_excel.py and put it in the folder you created.
3. Place the Excel file from the book’s repository called SOWC 2014 Stat

Tables_Table 9.xlsx in the same folder.

From this folder, type the following command in your terminal to run the script from
the command line:

python parse_script.py

By the end of this chapter, we will write a script to parse child labor and marriage data
stored in this Excel file.

To start our script, we need to import xlrd and open our Excel workbook in Python.
We store the opened file in the book variable:

import xlrd

book = xlrd.open_workbook('SOWC 2014 Stat Tables_Table 9.xlsx')

Unlike CSVs, Excel books can have multiple tabs or sheets. To get at our data, we are
going to pull out only the sheet with the data we want.

If you have a couple of sheets, you could just guess at the index, but that won’t work if
you have lots of sheets. So, you should know about the command
book.sheet_by_name(somename), where somename is the name of the sheet you want
to access.

Let’s check out the names of the sheets we have:

import xlrd

book = xlrd.open_workbook('SOWC 2014 Stat Tables_Table 9.xlsx')

for sheet in book.sheets():
 print sheet.name

The sheet that we are looking for is Table 9. So, let’s put that into our script:

import xlrd

book = xlrd.open_workbook('SOWC 2014 Stat Tables_Table 9.xlsx')
sheet = book.sheet_by_name('Table 9')

print sheet

76 | Chapter 4: Working with Excel Files

www.it-ebooks.info

https://github.com/jackiekazil/data-wrangling
http://www.it-ebooks.info/

If you run that code, it exits with an error that provides you with the following
information:

xlrd.biffh.XLRDError: No sheet named <'Table 9'>

At this point, you might be really confused. The problem lies in the difference
between what we see and what actually exists.

If you open up your Excel workbook and select the name of the sheet by double-
clicking it, you will find that there is an extra space at the end. This space is not visi‐
ble to users in the browser. In Chapter 7, we will learn how to troubleshoot this in
Python. For now, update your code to reflect the space.

Change this line:

sheet = book.sheet_by_name('Table 9')

to this:

sheet = book.sheet_by_name('Table 9 ')

Now, if we run our script it should work. You will see output similar to this:

<xlrd.sheet.Sheet object at 0x102a575d0>

Let’s explore what we can do with a sheet. Add the following after you assign the
sheet variable and rerun your script:

print dir(sheet)

In the returned list, you’ll see a method called nrows. We will use this method to iter‐
ate over all rows. If we write print sheet.nrows, the total number of rows will be
returned.

Try this now:

print sheet.nrows

You should have gotten back 303. We need to iterate over each row, which means we
need a for loop. As we learned in “How to Import CSV Data” on page 46, for loops
iterate over items in a list, so we need to turn 303 into a list we can iterate over 303
times. To do this, we will use the range function.

Getting Started with Parsing | 77

www.it-ebooks.info

http://www.it-ebooks.info/

What Is range()?
Remember how we mentioned that Python has some helpful built-in functions? Well,
range is one of those. The range function will take the number as an argument and
output a list of that many items.

To see how it works, open up your Python interpreter and try the following:

range(3)

The output should be:

[0, 1, 2]

Three items were returned. Now, we can create a for loop to loop three times by iter‐
ating over that list.

Some things to note about range:

• The list returned starts with 0. This is because Python starts list counts with 0. If
you need your list to start at 1, you can set the start and end of the range. For
example, range(1, 4) would return [1, 2, 3]. Notice the last number is not
included in the list, so to get [1, 2, 3] we had to set the end number to 4.

• There is another function called xrange in Python 2.7. There are slight differ‐
ences, but not anything you would notice unless you are processing very large
datasets—xrange is faster.

With the addition of the range function we can transform 303 into a list our for loop
can iterate over, our script should look like the following:

import xlrd

book = xlrd.open_workbook('SOWC 2014 Stat Tables_Table 9.xlsx')
sheet = book.sheet_by_name('Table 9 ')

for i in range(sheet.nrows):
 print i

Loops over the index i in range(303), which will be a list of 303 integers incre‐
menting by one.

Outputs i, which will be the numbers from 0 to 302.

From here, we need to do a lookup on each of the rows to pull out the contents of
each row instead of just printing the number. To do a lookup, we will use i as an
index reference to take the nth row.

78 | Chapter 4: Working with Excel Files

www.it-ebooks.info

http://bit.ly/python_range
http://www.it-ebooks.info/

To get each row’s values we will use row_values, which was another method returned
by dir(sheet) earlier. We can see from the row_values documentation that the
method expects an index number and returns the corresponding row’s values. Update
your for loop to reflect this and rerun your script:

for i in range(sheet.nrows):
 print sheet.row_values(i)

Uses i as the index to look up the row’s values. Because it is in a for loop that
spans the length of the sheet, we call this method for each row in our sheet.

When you run this code, you will see a list for each row. The following is a subset of
the data you’ll see:

['', u'TABLE 9. CHILD PROTECTION', '', '', '', '', '', '', '', '', '', '',
'', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '',
'', '', '', '', '', '', '', '', '', '', '', '', '']
['', '', u'TABLEAU 9. PROTECTION DE L\u2019ENFANT', '', '', '', '', '', '',
'', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '',
'', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '']
['', '', '', u'TABLA 9. PROTECCI\xd3N INFANTIL', '', '', '', '', '', '', '',
'', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '',
'', '', '', '', '', '', '', '', '', '', '', '', '', '']
['', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '',
'', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '', '',
'', '', '', '', '', '']
['', u'Countries and areas', '', '', u'Child labour (%)+\n2005\u20132012*',
'', '', '', '', '', u'Child marriage (%)\n2005\u20132012*', '', '', '',
u'Birth registration (%)+\n2005\u20132012*', '', u'Female genital mutilation/
cutting (%)+\n2002\u20132012*', '', '', '', '', '', u'Justification of wife
beating (%)\n 2005\u20132012*', '', '', '', u'Violent discipline
(%)+\n2005\u20132012*', '', '', '', '', '', '', '', '', '', '', '', '', '',
'', '', '', '']

Now that we can see each row, we need to pull out the information we want. To help
us determine what information we need and how to get it, it’s much easier to open up
the file in a program for displaying Excel files, such as Microsoft Excel on Windows
or Numbers on Mac. If you visit the second tab on the spreadsheet, you will notice
quite a few header rows.

In our code, we will aim to grab the English text. However, if you
want an extra challenge, try to pull out the French or Spanish head‐
ings and countries.

On the second tab, look at the information you can extract and think about how to
best organize it. We provide one possible way to do this here, but there are many dif‐
ferent ways using different data structures.

Getting Started with Parsing | 79

www.it-ebooks.info

http://bit.ly/xlrd_row_values
http://www.it-ebooks.info/

For this exercise, we will pull out child labor and child marriage statistics. The follow‐
ing is one way to organize the data—we’ll use this as an example to work toward:

{
 u'Afghanistan': {
 'child_labor': {
 'female': [9.6, ''],
 'male': [11.0, ''],
 'total': [10.3, '']},
 'child_marriage': {
 'married_by_15': [15.0, ''],
 'married_by_18': [40.4, '']
 }
 },
 u'Albania': {
 'child_labor': {
 'female': [9.4, u' '],
 'male': [14.4, u' '],
 'total': [12.0, u' ']},
 'child_marriage': {
 'married_by_15': [0.2, ''],
 'married_by_18': [9.6, '']
 }
 },
 ...
}

If you are viewing the data in Excel, some of these numbers might appear off.
This is because Excel will often round numbers. We are showing the numbers
you will find when you use Python to parse the cells.

Planning what you want the outcome to look like and writing an
example of your data will save you time as you begin coding. Once
you have identified how you’d like to format your data, you can ask
yourself, “What do I need to do next to get there?” This is espe‐
cially helpful when you feel blocked on your next step.

There are two Python constructs we are going to use to pull the data out. The first
method we will use is a nested for loop, which is a for loop inside another for loop.
This is often used when you have x rows that contain y objects. To access each object
you need a for loop for each row, then another for loop for each object. We also used
a nested for loop in an example in Chapter 3.

We are going to use a nested for loop to output each cell from each row. This will
output the items we saw earlier, where each row was listed.

for i in xrange(sheet.nrows):
 row = sheet.row_values(i)

80 | Chapter 4: Working with Excel Files

www.it-ebooks.info

http://www.it-ebooks.info/

 for cell in row:
 print cell

Takes the list that is each row and saves it to the row variable. This makes our
code more readable.

Loops over each item in the list, which represents each cell for the current row.

Outputs the cell value.

If you run your complete code with the nested for loop, you will notice your output
is not so helpful anymore. That brings us to the second mechanism to explore our
Excel file—a counter.

What Is a Counter?
A counter is a way to control the flow of your program. By using a counter, you can
control your for loop by adding an if statement and increasing the count with each
iteration of the loop. If the count ends up greater than a value of your choosing, the
for loop will no longer process the code controlled by it. Try the following example in
your interpreter:

count = 0

for i in range(1000):

 if count < 10:
 print i

 count += 1

print 'Count: ', count

Sets the count variable equal to 0

Creates a loop with items in the range of 0 to 999

Tests if the count is less than 10; if so, prints 1

Increases the count, so the count grows with each loop

Outputs the final count

Let’s add a counter to our code so we can step through the cells and rows to find what
we want to pull out. Be careful where you place the counter—you will have very dif‐
ferent results if you place it on the cell level versus the row level.

Getting Started with Parsing | 81

www.it-ebooks.info

http://www.it-ebooks.info/

Reset your for loop to look like the code shown here:

count = 0
for i in xrange(sheet.nrows):
 if count < 10:
 row = sheet.row_values(i)
 print i, row

 count += 1

Outputs i and the row so we can actually see which row number has which
information

Now, if we go back to what we want our final output to look like, what we really need
to figure out is where the country names begin. Remember, the country names are
the first keys of our output dictionary:

{
 u'Afghanistan': {...},
 u'Albania': {...},
 ...
}

If you run your script with the counter in it where count < 10, you will see from the
output that we have not yet reached the row where the country names start.

Because we are skipping a few lines to get to the data we are interested in, we are
looking to identify which row number we will need to start our data collection. From
our previous attempt, we know the country names start past row 10. But how can we
tell where to start?

The answer is in the next code example, but before you look, try updating the counter
to start at the row where the country names start. (There are multiple ways to do this,
so if your answer is slightly different than what we have in the following code exam‐
ple, that’s OK.)

After you identify the proper row number, you will need to add an if statement to
begin pulling out values after that row. This is so we only work with the data below
that line.

If you were able to get that working, your code should like something like this:

count = 0

for i in xrange(sheet.nrows):
 if count < 20:
 if i >= 14:
 row = sheet.row_values(i)
 print i, row
 count += 1

82 | Chapter 4: Working with Excel Files

www.it-ebooks.info

http://www.it-ebooks.info/

This line will iterate through the first 20 rows to identify which row the country
names begin on.

This if statement starts the output at the point where the country rows appear.

At this point, you should have output that looks like this:

14 ['', u'Afghanistan', u'Afghanistan', u'Afganist\xe1n', 10.3, '', 11.0, '',
9.6, '', 15.0, '', 40.4, '', 37.4, '', u'\u2013', '', u'\u2013', '',
u'\u2013', '', u'\u2013', '', 90.2, '', 74.4, '', 74.8, '', 74.1, '', '', '',
'', '', '', '', '', '', '', '', '', '']
15 ['', u'Albania', u'Albanie', u'Albania', 12.0, u' ', 14.4, u' ', 9.4,
u' ', 0.2, '', 9.6, '', 98.6, '', u'\u2013', '', u'\u2013', '', u'\u2013',
'', 36.4, '', 29.8, '', 75.1, '', 78.3, '', 71.4, '', '', '', '', '', '', '',
'', '', '', '', '', '']
16 ['', u'Algeria', u'Alg\xe9rie', u'Argelia', 4.7, u'y', 5.5, u'y', 3.9,
u'y', 0.1, '', 1.8, '', 99.3, '', u'\u2013', '', u'\u2013', '', u'\u2013', '',
u'\u2013', '', 67.9, '', 87.7, '', 88.8, '', 86.5, '', '', '', '', '', '', '',
'', '', '', '', '', '']
.... more

Now, we need to turn each row into our dictionary format. This will make the data
more meaningful to us when we try to do other things with it in future chapters.

Looking back at our earlier example of how we want our output to be organized, we
are going to need a dictionary and we are going to use countries as keys. To pull out
the country names, we will need to do some indexing.

What Is Indexing?
As you’ll recall from Chapter 3, indexing is a way a to pull an item out of a set of
objects, such as a list. In the case of the Excel file we are parsing, when we pass i to
sheet.row_values(), the method row_values uses i as an index. Let’s practice index‐
ing in the Python interpreter.

Create a sample list:

x = ['cat', 'dog', 'fish', 'monkey', 'snake']

To pull out the second item, you can refer to the item by adding an index, as shown
here:

>>>x[2]
'fish'

If this isn’t the result you expected, remember that Python starts counting at 0. So, to
get the second item as humans would identify it, we have to use the number 1:

>>>x[1]
'dog'

Getting Started with Parsing | 83

www.it-ebooks.info

http://www.it-ebooks.info/

You can also take a negative index:

>>>x[-2]
'monkey'

What is the difference in behavior between positive and negative indexes? You can see
that one counts from the beginning (positive) while the other counts from the end
(negative).

Slicing is another useful practice related to indexing. Slicing allows you to take a
“slice” out of another list or iterable object. For example:

>>>x[1:4]
['dog', 'fish', 'monkey']

Notice that, as with ranges, the slice starts at the first number, but the second number
is read as “up to, but not including.”

If you don’t include the first or last number, the slice will go to the end. Here are a few
examples:

x[2:]
['fish', 'monkey', 'snake']

x[-2:]
['monkey', 'snake']

x[:2]
['cat', 'dog']

x[:-2]
['cat', 'dog', 'fish']

Slicing on other iterable objects works the same way as with lists.

Let’s add a dictionary to our code, and then pull out the country name from each row
and add it as a key to our dictionary.

Update your for loop to reflect this:

count = 0
data = {}

for i in xrange(sheet.nrows):
 if count < 10:
 if i >= 14:
 row = sheet.row_values(i)
 country = row[1]
 data[country] = {}
 count += 1

print data

84 | Chapter 4: Working with Excel Files

www.it-ebooks.info

http://www.it-ebooks.info/

This creates an empty dictionary to store our data.

row[1] pulls out the country from each row we iterate over.

data[country] adds the country as a key to the data dictionary. We set the value
to another dictionary, because that is where we are going to store our data in the
following steps.

This outputs the data, so we can see what it looks like.

At this point, your output should look something like this:

{u'Afghanistan': {}, u'Albania': {}, u'Angola': {}, u'Algeria': {},
u'Andorra': {}, u'Austria': {}, u'Australia': {}, u'Antigua and Barbuda': {},
u'Armenia': {}, u'Argentina': {}}

Now, we need to match up each of the values in the rest of the row with the proper
values in the spreadsheet, then store them in our dictionary.

As you try to pull out all the values and check them against your
Excel sheet, you will make lots of errors. That is fine and expected.
This process should be embraced—it means you’re working your
way through the problem.

First, let’s create an empty version of our data structure where we can store our data.
Let’s also remove our counter, as we know that the rows of data start at line 14.
Because we know xrange can accept a start and end point, we can begin our counting
at 14 and end at the end of the file. Let’s take a look at our updated code:

data = {}

for i in xrange(14, sheet.nrows):
 row = sheet.row_values(i)
 country = row[1]

 data[country] = {
 'child_labor': {
 'total': [],
 'male': [],
 'female': [],
 },
 'child_marriage': {
 'married_by_15': [],
 'married_by_18': [],
 }
 }

print data['Afghanistan']

Getting Started with Parsing | 85

www.it-ebooks.info

http://www.it-ebooks.info/

We can remove all of our references to the counter and just begin our for loop
starting at the 14th row of our sheet. This line begins the loop with a value of 14,
so we automatically skip the lines we don’t need for our dataset.

This line expands the dictionary to multiple lines to fill out the other data points.

This creates the key child_labor and sets it equal to another dictionary.

The dictionary has strings to explain each part of the data it holds. For each of
these keys, the values are lists.

This outputs the values associated with the key Afghanistan.

Our output data for Afghanistan looks like this:

{
 'child_labor': {'total': [], 'male': [], 'female': []},
 'child_marriage': {'married_by_18': [], 'married_by_15': []}
}

Let’s now populate the data. Because we have access to each column of each row using
the index, we can populate these lists with the values from the sheet. By looking at
our sheet and lining up which columns relate to which parts of the data, we can
update the data dictionary to reflect the following:

 data[country] = {
 'child_labor': {
 'total': [row[4], row[5]],
 'male': [row[6], row[7]],
 'female': [row[8], row[9]],
 },
 'child_marriage': {
 'married_by_15': [row[10], row[11]],
 'married_by_18': [row[12], row[13]],
 }
 }

Because there are two cells for each of the columns, our code stores both values.
Because in this line our child labor totals are the fifth and sixth columns and we
know Python is zero-indexed, we want the fourth and fifth indexes.

When we run our code again, we get output like this:

{
 'child_labor': {'female': [9.6, ''], 'male': [11.0, ''], 'total': [10.3, '']},
 'child_marriage': {'married_by_15': [15.0, ''], 'married_by_18': [40.4, '']}}
}

86 | Chapter 4: Working with Excel Files

www.it-ebooks.info

http://www.it-ebooks.info/

Before you continue, output a couple of records and check the
number in the dictionary. It is easy to end up one index off and
ruin the rest of your data.

Finally, to preview our data, we can use pprint instead of a print statement. In com‐
plicated data structures (like dictionaries), this makes it a lot easier to review the out‐
put. Add the following to the end of your file to preview the data in a formatted
fashion:

import pprint
pprint.pprint(data)

Imports the pprint library. Normally, import statements come at the beginning
of the file, but we are putting it here for simplicity. After you are done, you will
want to delete these lines, because they are not critical to your script.

Passes data to the pprint.pprint() function.

If you scroll through your output, you will notice the majority of it looks good. But
there are a couple of records that seem out of place.

If you look at the spreadsheet, you should note the last row for countries is Zim‐
babwe. So, we want to look for when the country is equal to 'Zimbabwe', and exit
there. To exit, we add a break to our code, which is how we prematurely break the
for loop to continue with the rest of script. Let’s add that as our stopping point. At
the end of the for loop, add the following and rerun your code:

 if country == 'Zimbabwe':
 break

If the country is equal to Zimbabwe…

Exits out of the for loop.

After adding the break, did you end up with a NameError: name
'country' is not defined error? If so, check your indentation.
The if statement should be indented four spaces to be in the for
loop.
Stepping through code can be helpful in identifying an issue. If you
need to troubleshoot to figure out what a variable, such as country,
is equal to in a for loop, try adding print statements inside the for
loop and watching the values before your script exits with an error.
They will likely give you a hint as to what is happening.

Getting Started with Parsing | 87

www.it-ebooks.info

http://www.it-ebooks.info/

At this point, our script’s output matches our end goal. The last thing we want to do
to our script is to make sure we document it with some comments.

Comments
Use comments in your code as a way to help the future you (and others) understand
why you did something. To comment in your code, put a # before the comment:

This is a comment in Python. Python will ignore this line.

For a multiline comment, use the following format:

"""
 This is the formatting for a multiline comment.
 If your comment is really long or you want to
 insert a longer description, you should use
 this type of comment.
"""

Your script should now look something like this:

"""
 This is a script to parse child labor and child marriage data.
 The Excel file used in this script can be found here:
 http://www.unicef.org/sowc2014/numbers/
"""

import xlrd
book = xlrd.open_workbook('SOWC 2014 Stat Tables_Table 9.xlsx')

sheet = book.sheet_by_name('Table 9 ')

data = {}
for i in xrange(14, sheet.nrows):
 # Start at 14th row, because that is where the country data begins

 row = sheet.row_values(i)

 country = row[1]

 data[country] = {
 'child_labor': {
 'total': [row[4], row[5]],
 'male': [row[6], row[7]],
 'female': [row[8], row[9]],
 },
 'child_marriage': {
 'married_by_15': [row[10], row[11]],
 'married_by_18': [row[12], row[13]],
 }
 }

88 | Chapter 4: Working with Excel Files

www.it-ebooks.info

http://www.it-ebooks.info/

 if country == 'Zimbabwe':
 break

import pprint
pprint.pprint(data)

This is a multiline comment used to generally describe what is going on in this
script.

This is a single-line comment to document why we start on line 14 and not
earlier.

We can and should remove these lines as we move beyond simple parsing of data
into data analysis.

At this point, we have a similar output to the previous chapter’s data. In the next
chapter, we will take this a step further and parse the same data from a PDF.

Summary
The Excel format is an odd in-between category that is kind of machine readable.
Excel files were not meant to be read by programs, but they are parsable.

To handle this nonstandard format, we had to install external libraries. There are two
ways to find libraries: by looking on PyPI, the Python package index, or by searching
for tutorials and how-tos to see what other people have done.

Once you have identified the library you want to install, use the pip install com‐
mand to do it; to uninstall a library, use pip uninstall.

Besides learning how to parse Excel using the xlrd library, we also learned a few new
Python programming concepts, which are summarized in Table 4-1.

Table 4-1. New Python programming concepts

Concept Purpose

range and xrange This turns a number into a consecutive list of numbers. Example: range(3) will output
[0, 1, 2].

Counting starts at 0, not 1 This is a computer construct to be aware of; it occurs throughout programming. It is important to
note when using range, indexing, or slicing.

Indexing and slicing Use this to pull out a specific subset of a string or list.

Counters Use this as a tool to control for loops.

Summary | 89

www.it-ebooks.info

https://pypi.python.org/pypi
http://bit.ly/python_range
http://bit.ly/cutting_slicing_strings
http://www.it-ebooks.info/

Concept Purpose

Nested for loops Use when iterating over a data structure within a data structure, such as a list of lists, a list of
dictionaries, or a dictionary of dictionaries.

pprint pprint is a way to output data into the terminal in a nice format. This is good to use when
programming with complicated data structures.

break You can exit from a for loop early by using break. This will stop executing the loop and
continue on to the next part of the script.

Commenting It is important to keep all your code commented, so you know what is happening for future
reference.

As you read on and dig into PDFs, you will learn the importance of exploring alterna‐
tives to the data you have or finding alternate ways to locate and find data you need to
answer your research questions.

90 | Chapter 4: Working with Excel Files

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5

PDFs and Problem Solving in Python

Publishing data only in PDFs is criminal, but sometimes you don’t have other
options. In this chapter, you are going to learn how to parse PDFs, and in doing so
you will learn how to troubleshoot your code.

We will also cover how to write a script, starting with some basic concepts like
imports, and introduce some more complexity. Throughout this chapter, you will
learn a variety of ways to think about and tackle problems in your code.

Avoid Using PDFs!
The data used in this section is the same data as in the previous chapter, but in PDF
form. Normally, one does not seek data in difficult-to-parse formats, but we did for
this book because the data you need to work with may not always be in the ideal for‐
mat. You can find the PDF we use in this chapter in the book’s GitHub repository.

There are a few things you need to consider before you start parsing PDF data:

• Have you tried to find the data in another form? If you can’t find it online, try
using a phone or email.

• Have you tried to copy and paste the data from the document? Sometimes, you
can easily select, copy, and paste data from a PDF into a spreadsheet. This doesn’t
always work, though, and it is not scalable (meaning you can’t do it for many files
or pages quickly).

If you can’t avoid dealing with PDFs, you’ll need to learn how to parse your data with
Python. Let’s get started.

91

www.it-ebooks.info

https://github.com/jackiekazil/data-wrangling
http://www.it-ebooks.info/

Programmatic Approaches to PDF Parsing
PDFs are more difficult to work with than Excel files because each one can be in an
unpredictable format. (When you have a series of PDF files, parsing comes in handy,
because hopefully they will be a consistent set of documents.)

PDF tools handle documents in various ways, including by converting the PDFs to
text. As we were writing this book, Danielle Cervantes started a conversation about
PDF tools on a listserv for journalists called NICAR. The conversation led to the
compilation of the following list of PDF parsing tools:

• ABBYY’s Transformer
• Able2ExtractPro
• Acrobat Professional
• Adobe Reader
• Apache Tika
• Cogniview’s PDF to Excel
• CometDocs
• Docsplit
• Nitro Pro
• PDF XChange Viewer
• pdfminer

• pdftk

• pdftotext

• Poppler
• Tabula
• Tesseract
• xPDF
• Zamzar

Besides these tools, you can also parse PDFs with many programming languages—
including Python.

Just because you know a tool like Python doesn’t mean it’s always
the best tool for the job. Given the variety of tools available, you
may find another tool is easier for part of your task (such as data
extraction). Keep an open mind and investigate many options
before proceeding.

92 | Chapter 5: PDFs and Problem Solving in Python

www.it-ebooks.info

http://www.it-ebooks.info/

As mentioned in “Installing Python Packages” on page 73, PyPI is a convenient place
for us to look for Python packages. If you search for “PDF”, you’ll get a bunch of
results, similar to those shown in Figure 5-1.

Figure 5-1. PDF packages on PyPI

If you start looking through these options to get more information on each of the
libraries, none of them will look like an obvious choice for parsing PDFs. If you try a
couple more searches, such as “parse pdf,” more options will surface, but there is no
obvious leader. So, we went back to search engines to look for what people are using.

Watch the publication dates on the materials you find when you are
looking for libraries or solutions. The older a post or question is,
the greater the probability it might be out of date and no longer
usable. Try searching within the past two years, then extend further
only if needed.

After looking at various tutorials, documentation, blog posts, and a couple of helpful
articles such as this one, we decided to try the slate library.

slate worked well for what we needed, but this won’t always be the
case. It’s OK to abandon something and start over. If there are mul‐
tiple options, use what makes sense to you, even if someone tells
you that it is not the “best” tool. Which tool is best is a matter of
opinion. When you’re learning how to program, the best tool is the
most intuitive one.

Programmatic Approaches to PDF Parsing | 93

www.it-ebooks.info

http://bit.ly/pdf_packages
http://bit.ly/parse_pdf_packages
http://bit.ly/manipulating_pdfs_python
http://bit.ly/manipulating_pdfs_python
https://pypi.python.org/pypi/slate
http://www.it-ebooks.info/

Opening and Reading Using slate
We decided to use the slate library for this problem, so let’s go ahead and install it.
On your command line, run the following:

pip install slate

Now you have slate installed, so you can create a script with the following code and
save it as parse_pdf.py. Make sure it is in the same folder as the PDF file, or correct
the file path. This code prints the first two lines of the file:

import slate

pdf = 'EN-FINAL Table 9.pdf'

with open(pdf) as f:
 doc = slate.PDF(f)

for page in doc[:2]:
 print page

Imports the slate library.

Creates a string variable to hold the file path—make sure your spaces and cases
match exactly.

Passes the filename string to Python’s open function, so Python can open the file.
Python will open the file as the variable f.

Passes the opened file known as f to slate.PDF(f), so slate can parse the PDF
into a usable format.

Loops over the first couple of pages in the doc and outputs them, so we know
everything is working.

Usually pip will install all necessary dependencies; however, it
depends on the package managers to list them properly. If you see
an ImportError, using this library or otherwise, you should care‐
fully read the next line and see what packages are not installed. If
you received the message ImportError: No module named

pdfminer.pdfparser when running this code, it means installing
slate did not properly install pdfminer, even though it’s a require‐
ment. To do so, you need to run pip install --upgrade --
ignoreinstalled slate==0.3 pdfminer==20110515 (as
documented in the slate issue tracker).

94 | Chapter 5: PDFs and Problem Solving in Python

www.it-ebooks.info

https://github.com/timClicks/slate/issues/5
http://www.it-ebooks.info/

Run the script, and then compare the output to what is in the PDF.

Here is the first page:

TABLE 9Afghanistan 10 11 10 15 40 37 – – – – 90 74 75 74Albania
12 14 9 0 10 99 – – – 36 30 75 78 71Algeria 5 y 6 y 4 y 0 2 99
– – – – 68 88 89 87Andorra – – – – – 100 v – – – – – – –
–Angola 24 x 22 x 25 x – – 36 x – – – – – – – –Antigua and Barbuda
– – – – – – – – – – – – – –Argentina 7 y 8 y 5 y – – 99 y
– – – – – – – –Armenia 4 5 3 0 7 100 – – – 20 9 70 72
67Australia – – – – – 100 v – – – – – – – –Austria – –
– – – 100 v – – – – – – – –Azerbaijan 7 y 8 y 5 y 1 12 94 – –
– 58 49 75 79 71Bahamas – – – – – – – – – – – – –
–Bahrain 5 x 6 x 3 x – – – – – – – – – – –Bangladesh 13 18
8 29 65 31 – – – – 33 y – – –Barbados – – – – – – – –
– – – – – –Belarus 1 1 2 0 3 100 y – – – 4 4 65 y 67 y 62
yBelgium – – – – – 100 v – – – – – – – –Belize 6 7 5
3 26 95 – – – – 9 71 71 70Benin 46 47 45 8 34 80 13 2 y
1 14 47 – – –Bhutan 3 3 3 6 26 100 – – – – 68 – – –Bolivia (
Plurinational State of) 26 y 28 y 24 y 3 22 76 y – – – – 16 – –
–Bosnia and Herzegovina 5 7 4 0 4 100 – – – 6 5 55 60
50Botswana 9 y 11 y 7 y – – 72 – – – – – – – –Brazil 9 y 11 y 6 y
11 36 93 y – – – – – – – –Brunei Darussalam – – – – – – –
– – – – – – –Bulgaria – – – – – 100 v – – – – – – –
–Burkina Faso 39 42 36 10 52 77 76 13 9 34 44 83 84 82Burundi
26 26 27 3 20 75 – – – 44 73 – – –Cabo Verde 3 x,y 4 x,y 3
x,y 3 18 91 – – – 16 y 17 – – –Cambodia 36 y 36 y 36 y 2 18 62 –
– – 22 y 46 y – – –Cameroon 42 43 40 13 38 61 1 1 y 7 39
47 93 93 93Canada – – – – – 100 v – – – – – – – –Central
African Republic 29 27 30 29 68 61 24 1 11 80 y 80 92 92
92Chad 26 25 28 29 68 16 44 18 y 38 – 62 84 85 84Chile 3 x 3
x 2 x – – 100 y – – – – – – – –China – – – – – – – – –
– – – – –Colombia 13 y 17 y 9 y 6 23 97 – – – – – – – –Comoros
27 x 26 x 28 x – – 88 x – – – – – – – –Congo 25 24 25 7 33
91 – – – – 76 – – –TABLE 9 CHILD PROTECTIONCountries and
areasChild labour (%)+ 2005–2012*Child marriage (%) 2005–2012*Birth
registration (%)+ 2005–2012*totalFemale genital mutilation/cutting (%)+
2002–2012*Justification of wife beating (%) 2005–2012*Violent discipline (%)+
2005–2012*prevalenceattitudestotalmalefemalemarried by 15married by
18womenagirlsbsupport for the practicecmalefemaletotalmalefemale78 THE
STATE OF THE WORLD’S CHILDREN 2014 IN NUMBERS

If you look at your PDF, it’s easy to see the pattern of rows in the page. Let’s check
what data type the page is:

for page in doc[:2]:
 print type(page)

Updates from print page to print type(page) in your code.

Programmatic Approaches to PDF Parsing | 95

www.it-ebooks.info

http://www.it-ebooks.info/

Running that generates the following output:

<type 'str'>
<type 'str'>

So, we know a page in slate is a long string. This is helpful because we now under‐
stand we can use string methods (for a refresher on these, refer back to Chapter 2).

Overall, this file was not difficult to read. Because it contains only tables and barely
any text, slate could parse it pretty well. In some cases, the tables are buried inside
the text, so you might have to skip lines to get to the data you need. If you do have to
skip lines, you can follow the pattern in the Excel example in the previous chapter,
where we created a counter incremented by one for each row, used it to find the
region, and then used the technique described in “What Is Indexing?” on page 83 to
select only the data we needed.

Our end goal is to get the data from the PDF into the same format as the Excel file
output. To do so, we need to break the strings apart to pull out each row. The thought
process behind this is to look for patterns to identify where a new row begins. That
might sound easy, but it can get pretty complicated.

When dealing with large strings, people often use regular expressions (RegEx). If you
aren’t familiar with regex and writing regex searches, this could be a difficult
approach. If you are up for the challenge and want to learn more about regex with
Python, check out the section “RegEx Matching” on page 181. For our purposes, we’ll
try a simpler approach to extract our data.

Converting PDF to Text
First we want to convert the PDF to text; then we will parse it. This approach is better
if you have a very large file or files. (In the slate library, our script will parse the PDF
every time it runs. This can be very time- and memory-consuming with large or
numerous files).

To convert our PDF to text, we will need to use pdfminer. Start by installing that:

pip install pdfminer

Once you install pdfminer, a command called pdf2txt.py is available, which will
convert your PDF to file to text. Let’s do that now. We can run the following com‐
mand to convert the PDF to text in the same folder so all of our materials are
together:

pdf2txt.py -o en-final-table9.txt EN-FINAL\ Table\ 9.pdf

The first argument (-o en-final-table9.txt) is the text file we want to create. The
second argument (EN-FINAL\ TABLE\ 9.pdf) is our PDF. Make sure to use the cor‐
rect capitalization and capture any spaces in the filename. Spaces will need to be pre‐

96 | Chapter 5: PDFs and Problem Solving in Python

www.it-ebooks.info

http://www.it-ebooks.info/

ceded with a backslash (\). This is referred to as escaping. Escaping tells the computer
the space is part of whatever is being typed out.

Autocompletion Using Tab
The Tab key in the terminal is your new best friend. For the second argument in the
command you just ran, you could have typed EN, then pressed the Tab key twice. If
there is only one possibility, your computer will fill in the rest of the filename. If there
are multiple possibilities, it will give you a warning sound and return a list of possible
options. This is a great technique for entering long folder/filenames with funky
characters.

Try this. Change to your home directory (cd ~/ on Unix-based systems or cd %cd%
on Windows). Now, let’s say you want to cd into your Documents directory. Try typing
cd D + Tab + Tab. What happened? What were the other files or folders in your home
directory that started with D? (Perhaps Downloads?)

Now try cd Doc + Tab + Tab. You should be able to autocomplete to your Documents
folder.

After running this command, we have a text version of our PDF in a file called en-
final-table9.txt.

Let’s read our new file into Python. Create a new script with the following code in the
same folder as your previous script. Call it parse_pdf_text.py, or something similar
that makes sense to you:

pdf_txt = 'en-final-table9.txt'
openfile = open(pdf_txt, 'r')

for line in openfile:
 print line

We can read in the text line by line and print each line, showing we have the table in
text form.

Parsing PDFs Using pdfminer
Because PDFs are notoriously difficult to work with, we’ll be learning how to work
through problems in our code and do some basic troubleshooting.

We want to start collecting the country names, because the country names are going
to be the keys in our final dataset. If you open up your text file, you will find that the
eighth line is the last line before the countries start. That line has the text and areas:

Parsing PDFs Using pdfminer | 97

www.it-ebooks.info

http://www.it-ebooks.info/

5 TABLE 9 CHILD PROTECTION
6
7 Countries
8 and areas
9 Afghanistan
10 Albania
11 Algeria
12 Andorra

If you look through the text document, you will see that this is a consistent pattern.
So, we want to create a variable which acts as an on/off switch to start and stop the
collection process when it hits the line and areas.

To accomplish this we will update the for loop to include a Boolean variable, which is
a True/False variable. We want to set our Boolean to True when we hit the and areas
lines:

country_line = False
for line in openfile:

 if line.startswith('and areas'):
 country_line = True

Sets country_line to False, because by default the line is not a country line.

Searches for a line that starts with and areas.

Sets country_line to True.

The next thing we need to find is when to set the Boolean back to False. Take a
moment to look at the text file to identify the pattern. How do you know when the list
of countries ends?

If you look at the follow excerpt, you will notice there is a blank line:

45 China
46 Colombia
47 Comoros
48 Congo
49
50 total
51 10
52 12

But how does Python recognize a blank line? Add a line to your script to print out the
Python representation of the line (see “Formatting Data” on page 162 for more on
string formatting):

98 | Chapter 5: PDFs and Problem Solving in Python

www.it-ebooks.info

http://www.it-ebooks.info/

country_line = False
for line in openfile:
 if country_line:
 print '%r' % line

 if line.startswith('and areas'):
 country_line = True

If country_line is True, which it will be after the previous iteration of the for
loop…

… then print out the Python representation of the line.

If you look at the output, you will notice that all the lines now have extra characters at
the end:

45 'China \n'
46 'Colombia \n'
47 'Comoros \n'
48 'Congo \n'
49 '\n'
50 'total\n'
51 '10 \n'
52 '12 \n'

The \n is the symbol of the end of a line, or a newline character. This is what we will
now use as the marker to turn off the country_line variable. If country_line is set
to True but the line is equal to \n, our code should set country_line to False,
because this line marks the end of the country names:

country_line = False
for line in openfile:

 if country_line:
 print line

 if line.startswith('and areas'):
 country_line = True
 elif country_line:
 if line == '\n':
 country_line = False

If country_line is True, print out the line so we can see the country name. This
comes first because we don’t want it after our and areas test; we only want to
print the actual country names, not the and areas line.

If country_line is True and the line is equal to a newline character, set
country_line to False, because the list of countries has ended.

Parsing PDFs Using pdfminer | 99

www.it-ebooks.info

http://www.it-ebooks.info/

1 Your text editor likely has an option to turn on line numbers, and might even have a shortcut to “hop” to a
particular line number. Try a Google search if it’s not obvious how to use these features.

Now, when we run our code, we get what looks like all the lines with countries
returned. This will eventually turn into our country list. Now, let’s look for the mark‐
ers for the data we want to collect and do the same thing. The data we are looking for
is the child labor and child marriage figures. We will begin with child labor data—we
need total, male, and female numbers. Let’s start with the total.

We will follow the same pattern to find total child labor:

1. Create an on/off switch using True/False.
2. Look for the starter marker to turn it on.
3. Look for the ending marker to turn it off.

If you look at the text, you will see the starting marker for data is total. Look at line 50
in the text file you created to see the first instance:1

45 China
46 Colombia
47 Comoros
48 Congo
49
50 total
51 10
52 12

The ending marker is once again a newline or \n, which you can see on line 71:

68 6
69 46
70 3
71
72 26 y
73 5

Let’s add this logic to our code and check the results using print:

country_line = total_line = False
for line in openfile:

 if country_line or total_line:
 print line

 if line.startswith('and areas'):
 country_line = True
 elif country_line:
 if line == '\n':
 country_line = False

100 | Chapter 5: PDFs and Problem Solving in Python

www.it-ebooks.info

http://www.it-ebooks.info/

 if line.startswith('total'):
 total_line = True
 elif total_line:
 if line == '\n':
 total_line = False

Sets total_line to False.

If country_line or total_line is set to True, outputs the line so we can see what
data we have.

Checks where total_line starts and set total_line to True. The code following
this line follows the same construction we used for the country_line logic.

At this point, we have some code redundancy. We are repeating some of the same
code, just with different variables or on and off switches. This opens up a conversa‐
tion about how to create non-redundant code. In Python, we can use functions to per‐
form repetitive actions. That is, instead of manually performing those sets of actions
line by line in our code, we can put them in a function and call the function to do it
for us. If we need to test each line of a PDF, we can use functions instead.

When first writing functions, figuring out where to place them can
be confusing. You need to write the code for the function before
you want to call the function. This way Python knows what the
function is supposed to do.

We will name the function we are writing turn_on_off, and we will set it up to
receive up to four arguments:

• line is the line we are evaluating.
• status is a Boolean (True or False) representing whether it is on or off.
• start is what we are looking for as the start of the section—this will trigger the

on or True status.
• end is what we are looking for as the end of the section—this will trigger the off

or False status.

Update your code and add the shell for the function above your for loop. Do not for‐
get to add a description of what the function does—this is so when you refer back to
the function later, you don’t have to try to decipher it. These descriptions are called
docstrings:

Parsing PDFs Using pdfminer | 101

www.it-ebooks.info

http://www.it-ebooks.info/

def turn_on_off(line, status, start, end='\n'):
 """
 This function checks to see if a line starts/ends with a certain
 value. If the line starts/ends with that value, the status is
 set to on/off (True/False).
 """
 return status

country_line = total_line = False
for line in openfile:

This line begins the function and will take up to four arguments. The first three,
line, status, and start, are required arguments—that is, they must be provided
because they have no default values. The last one, end, has a default value of a
newline character, as that appears to be a pattern with our file. We can override
the default value by passing a different value when we call our function.

Always write a description (or docstring) for your function, so you know what it
does. It doesn’t have to be perfect. Just make sure you have something. You can
always update it later.

The return statement is the proper way to exit a function. In this case, we are
going to return status, which will be True or False.

Arguments with Default Values Always Come Last
When writing a function, arguments without a default value always have to be listed
before arguments with a default value. This is why end='\n' is the last argument in
our example. We can see an argument has a default value, as it will be listed like a
keyword and value pair (i.e., value_name=value), with the default value given after
the = sign (\n in our example).

Python evaluates function arguments when the function is called. If we called the
function for countries, it would look like this:

turn_on_off(line, country_line, 'and areas')

This takes advantage of the default end value. If you wanted to override the default
with two newline characters we would do the following:

turn_on_off(line, country_line, 'and areas', end='\n\n')

Let’s pretend we set status to have a default value of False. What would we need to
change?

Here is the original first line of the function:

def turn_on_off(line, status, start, end='\n'):

102 | Chapter 5: PDFs and Problem Solving in Python

www.it-ebooks.info

http://www.it-ebooks.info/

Here are two possible ways to update it:

def turn_on_off(line, start, end='\n', status=False):
def turn_on_off(line, start, status=False, end='\n'):

The status argument will have to be moved after the required arguments. When call‐
ing the new function, we can use defaults for end and status, or we can override
them:

turn_on_off(line, 'and areas')
turn_on_off(line, 'and areas', end='\n\n', status=country_line)

If you accidentally list arguments with defaults before required arguments, Python
will throw an error: SyntaxError: non-default argument follows default argu
ment. You don’t need to memorize this, but be aware so if you see the error, you recog‐
nize what it’s referencing.

Now, let’s move the code from our for loop into the function. We want to replicate
the logic we had with country_line in our new turn_on_off function:

def turn_on_off(line, status, start, end='\n'):
 """
 This function checks to see if a line starts/ends with a certain
 value. If the line starts/ends with that value, the status is
 set to on/off (True/False).
 """

 if line.startswith(start):
 status = True
 elif status:
 if line == end:
 status = False
 return status

Replaces what we are searching for on the starting line with the start variable.

Replaces the end text we used with the end variable.

Returns the status based on the same logic (end means False, start means
True).

Let’s now call the function in our for loop, and check out what our script looks like
all together thus far:

pdf_txt = 'en-final-table9.txt'
openfile = open(pdf_txt, "r")

def turn_on_off(line, status, start, end='\n'):
 """

Parsing PDFs Using pdfminer | 103

www.it-ebooks.info

http://www.it-ebooks.info/

 This function checks to see if a line starts/ends with a certain
 value. If the line starts/ends with that value, the status is
 set to on/off (True/False).
 """
 if line.startswith(start):
 status = True
 elif status:
 if line == end:
 status = False
 return status

country_line = total_line = False

for line in openfile:
 if country_line or total_line:
 print '%r' % line

 country_line = turn_on_off(line, country_line, 'and areas')
 total_line = turn_on_off(line, total_line, 'total')

In Python syntax, a series of = symbols means we are assigning each of the vari‐
ables listed to the final value. This line assigns both country_line and
total_line to False.

We want to still keep track of our lines and the data they hold when we are on.
For this, we are employing or. A Python or says if one or the other is true, do the
following. This line says if either country_line or total_line is True, print the
line.

This calls the function for countries. The country_line variable catches the
returned status that the function outputs and updates it for the next for loop.

This calls the function for totals. It works the same as the previous line for coun‐
try names.

Let’s start to store our countries and totals in lists. Then we will take those lists and
turn them into a dictionary, where the country will be the key and the total will be the
value. This will help us troubleshoot to see if we need to clean up our data.

Here’s the code to create the two lists:

countries = []
totals = []
country_line = total_line = False
for line in openfile:

 if country_line:
 countries.append(line)

104 | Chapter 5: PDFs and Problem Solving in Python

www.it-ebooks.info

http://www.it-ebooks.info/

 elif total_line:
 totals.append(line)

 country_line = turn_on_off(line, country_line, 'and areas')
 total_line = turn_on_off(line, total_line, 'total')

Creates empty countries list.

Creates empty totals list.

Note that we’ve removed the if country_line or total_line statement. We
will break this out separately below.

If it’s a country line, this line adds the country to the country list.

This line collects totals, the same as we did with countries.

We are going to combine the totals and countries by “zipping” the two datasets. The
zip function takes an item from each list and pairs them together until all items are
paired. We can then convert the zipped list to a dictionary by passing it to the dict
function.

Add the following to the end of the script:

import pprint
test_data = dict(zip(countries, totals))
pprint.pprint(test_data)

Imports the pprint library. This prints complex data structures in a way that
makes them easy to read.

Creates a variable called test_data, which will be the countries and totals zipped
together and then turned into a dictionary.

Passes test_data to the pprint.pprint() function to pretty print our data.

If you run the script now, you will get a dictionary that looks like this:

{'\n': '49 \n',
 ' \n': '\xe2\x80\x93 \n',
 ' Republic of Korea \n': '70 \n',
 ' Republic of) \n': '\xe2\x80\x93 \n',
 ' State of) \n': '37 \n',
 ' of the Congo \n': '\xe2\x80\x93 \n',
 ' the Grenadines \n': '60 \n',
 'Afghanistan \n': '10 \n',
 'Albania \n': '12 \n',
 'Algeria \n': '5 y \n',

Parsing PDFs Using pdfminer | 105

www.it-ebooks.info

http://www.it-ebooks.info/

 'Andorra \n': '\xe2\x80\x93 \n',
 'Angola \n': '24 x \n',
 'Antigua and Barbuda \n': '\xe2\x80\x93 \n',
 'Argentina \n': '7 y \n',
 'Armenia \n': '4 \n',
 'Australia \n': '\xe2\x80\x93 \n',

At this point, we are going to do some cleaning. This will be explained in greater
detail in Chapter 7. For now, we need to clean up our strings, as they are very hard to
read. We are going to do this by creating a function to clean up each line. Place this
function above the for loop, near your other function:

def clean(line):
 """
 Cleans line breaks, spaces, and special characters from our line.
 """
 line = line.strip('\n').strip()
 line = line.replace('\xe2\x80\x93', '-')
 line = line.replace('\xe2\x80\x99', '\'')

 return line

Strips \n off of the line and reassigns the output to line so now line holds the
cleaned version

Replaces special character encodings

Returns our newly cleaned string

In the cleaning we just did, we could combine method calls like
this:

line = line.strip('\n').strip().replace(
 '\xe2\x80\x93', '-').replace('\xe2\x80\x99s', '\'')

However, well-formatted Python code lines should be no greater
than 80 characters in length. This is a recommendation, not a rule,
but keeping your lines restricted in length allows your code to be
more readable.

Let’s apply the clean_line function in our for loop:

for line in openfile:
 if country_line:
 countries.append(clean(line))
 elif total_line:
 totals.append(clean(line))

106 | Chapter 5: PDFs and Problem Solving in Python

www.it-ebooks.info

http://www.it-ebooks.info/

Now if we run our script, we get something that looks closer to what we are aiming
for:

{'Afghanistan': '10',
 'Albania': '12',
 'Algeria': '5 y',
 'Andorra': '-',
 'Angola': '24 x',
 'Antigua and Barbuda': '-',
 'Argentina': '7 y',
 'Armenia': '4',
 'Australia': '-',
 'Austria': '-',
 'Azerbaijan': '7 y',
...

If you skim the list, you will see our approach is not adequately parsing all of the data.
We need to figure out why this is happening.

It looks like countries with names spread over more than one line are separated into
two records. You can see with this Bolivia: we have records reading 'Bolivia (Pluri
national': '', and 'State of)': '26 y',.

The PDF itself can be used as a visual reference to show you how the data should be
organized. You can see these lines in the PDF, as shown in Figure 5-2.

Figure 5-2. Bolivia in the PDF

PDFs can be rabbit holes. Each PDF you process will require its
own finesse. Because we are only parsing this PDF once, we are
doing a lot of hand-checking. If this was a PDF we needed to parse
on a regular basis, we would want to closely identify patterns over
time and programmatically account for those, along with building
checks and testing our code to ensure our import is accurate.

There are a couple of ways to approach this problem. We could try to create a place‐
holder to check for blank total lines and combine those with the following data lines.
Another solution is to keep track of which countries have records spanning more
than one line. We will try the second approach, as our dataset isn’t too large.

Parsing PDFs Using pdfminer | 107

www.it-ebooks.info

http://www.it-ebooks.info/

We will create a list of the first lines for each multiline country record and use this list
to check each line in our script. You will want to put this list before your for loop.
Often, reference items are put near the top of the script so they are easy to find and
change as needed.

Let’s add Bolivia (Plurinational to a list of double-lined countries:

double_lined_countries = [
 'Bolivia (Plurinational',
]

Now we need to update our for loop to check if the previous line is in the
double_lined_countries list, and, if so, combine that line with the current line. To
do so, we will create a previous_line variable. Then, we will populate the previ
ous_line variable at the end of the for loop. Only then will we be able to combine
the rows when the code hits the next iteration of the loop:

countries = []
totals = []
country_line = total_line = False
previous_line = ''

for line in openfile:
 if country_line:
 countries.append(clean(line))
 elif total_line:
 totals.append(clean(line))

 country_line = turn_on_off(line, country_line, 'and areas')
 total_line = turn_on_off(line, total_line, 'total')

 previous_line = line

Creates the previous_line variable and sets it to an empty string.

Populates the previous_line variable with the current line at the end of the for
loop.

Now we have a previous_line variable and we can check to see if the previous_line
is in double_lined_countries so we know when to combine the previous line with
the current line. Furthermore, we will want to add the new combined line to the
countries list. We also want to make sure we do not add the line to the countries list if
the first part of the name is in the double_lined_countries list.

Let’s update our code to reflect these changes:

 if country_line:
 if previous_line in double_lined_countries:
 line = ' '.join([clean(previous_line), clean(line)])
 countries.append(line)

108 | Chapter 5: PDFs and Problem Solving in Python

www.it-ebooks.info

http://www.it-ebooks.info/

 elif line not in double_lined_countries:
 countries.append(clean(line))

We want the logic in the if country_line section because it is only relevant to
country names.

If the previous_line is in the double_lined_countries list, this line joins the
previous_line with the current line and assigns the combined lines to the line
variable. join, as you can see, binds a list of strings together with the preceding
string. This line uses a space as the joining character.

If the line is not in the double_lined_countries list, then the following line
adds it to the countries list. Here, we utilize elif, which is Python’s way of saying
else if. This is a nice tool to use if you want to include a different logic flow
than if - else.

If we run our script again, we see 'Bolivia (Plurinational State of)' is now
combined. Now we need to make sure we have all the countries. We will do this man‐
ually because our dataset is small, but if you had a larger dataset, you would automate
this.

Automating Your Data Checking
How do you know when to manually check the data and when to automate it with
Python? Here are a few tips:

• If you are parsing the data over and over again on a regular basis, automate it.
• If you have a large dataset, you should probably automate it.
• If you have a manageable dataset and you are only parsing the data once, then

you have a choice. In our example, the dataset is pretty small, so we won’t auto‐
mate it.

Look at the PDF in a PDF viewer to identify all the double-lined country names:

Bolivia (Plurinational State of)
Democratic People’s Republic of Korea
Democratic Republic of the Congo
Lao People’s Democratic Republic
Micronesia (Federated States of)
Saint Vincent and the Grenadines
The former Yugoslav Republic of Macedonia
United Republic of Tanzania
Venezuela (Bolivarian Republic of)

Parsing PDFs Using pdfminer | 109

www.it-ebooks.info

http://www.it-ebooks.info/

We know this is likely not how Python sees it, so we need to print out the countries as
Python sees them and add those to the list:

 if country_line:
 print '%r' % line
 if previous_line in double_lined_countries:

Adds a print '%r' statement to output the Python representation

Run your script to populate the double_lined_countries list with the Python
representation:

double_lined_countries = [
 'Bolivia (Plurinational \n',
 'Democratic People\xe2\x80\x99s \n',
 'Democratic Republic \n',
 'Micronesia (Federated \n',
 #... uh oh.
]

We are missing Lao People’s Democratic Republic from our output, but it’s on
two lines in the PDF. Let’s go back to the text version of the PDF and see what
happened.

After looking at the text, can you identify the issue? Look at the turn_on_off func‐
tion. How does that work in relation to how this text is written?

The problem turns out to be a blank line or \n right after the and areas we were look‐
ing for as a marker. If you look at the text file that we created, you will see the stray
blank line on line number 1343:

...
1341 Countries
1342 and areas
1343
1344 Iceland
1345 India
1346 Indonesia
1347 Iran (Islamic Republic of)
...

That means our function didn’t work. There are multiple ways we could approach
this problem. For this example, we could try adding in more logic to make sure our
on/off code works as intended. When we start to collect countries, there should be at
least one country collected before we turn off the country collection. If no countries
have been collected, then we should not turn off the collecting action. We can also use
the previous line as a way to solve this problem. We can test the previous line in our
on/off function and ensure it’s not in a list of special lines.

In case we come across any other anomalies, let’s set up this special line:

110 | Chapter 5: PDFs and Problem Solving in Python

www.it-ebooks.info

http://www.it-ebooks.info/

def turn_on_off(line, status, start, prev_line, end='\n'):
 """
 This function checks to see if a line starts/ends with a certain
 value. If the line starts/ends with that value, the status is
 set to on/off (True/False) as long as the previous line isn't special.
 """
 if line.startswith(start):
 status = True
 elif status:
 if line == end and prev_line != 'and areas':
 status = False
 return status

If the line is equal to end and the previous line is not equal to and areas, then we
can turn data collection off. Here, we are using != which is Python’s way of test‐
ing “not equal.” Similar to ==, != returns a Boolean value.

You will also need to update your code to pass the previous line:

 country_line = turn_on_off(line, country_line, previous_line, 'and areas')
 total_line = turn_on_off(line, total_line, previous_line, 'total')

Let’s go back to the original task we were working on—creating our list of double-
lined countries so that we can make sure to collect both lines. We left off here:

double_lined_countries = [
 'Bolivia (Plurinational \n',
 'Democratic People\xe2\x80\x99s \n',
 'Democratic Republic \n',
]

Looking at the PDF, we see the next one is Lao People’s Democratic Republic.
Let’s start adding from there by looking back at our script output:

double_lined_countries = [
 'Bolivia (Plurinational \n',
 'Democratic People\xe2\x80\x99s \n',
 'Democratic Republic \n',
 'Lao People\xe2\x80\x99s Democratic \n',
 'Micronesia (Federated \n',
 'Saint Vincent and \n',
 'The former Yugoslav \n',
 'United Republic \n',
 'Venezuela (Bolivarian \n',
]

If your list looks like the preceding list, when you run the script, you should have an
output that pulls in the country names split over two lines. Make sure to add a print
statement to the end of your script to view the country list:

import pprint
pprint.pprint(countries)

Parsing PDFs Using pdfminer | 111

www.it-ebooks.info

http://www.it-ebooks.info/

Now that you have spent a bit of time with the country list, can you think of another
approach to solve this issue? Take a look at a few of the second lines:

' Republic of Korea \n'
' Republic \n'
' of the Congo \n'

What do they have in common? They start with spaces. Writing code to check
whether a line begins with three spaces would be more efficient. However, taking the
approach we did allowed us to discover we were losing part of our dataset as it was
being collected. As your coding skills develop, you will learn to find different ways to
approach the same problem and determine which works best.

Let’s check to see how our total numbers line up with our countries. Update the
pprint statement to match the following:

import pprint
data = dict(zip(countries, totals))
pprint.pprint(data)

Zips the countries and totals lists together by calling zip(countries, totals).
This turns them into a tuple. We then change the tuple into a dictionary, or dict
(for easier reading), by passing it to the dict function.

Prints out the data variable we just created.

What you will see returned is a dictionary where the country names are the keys and
the totals are the values. This is not our final data format; we are just doing this to see
our data so far. The result should look like this:

{'': '-',
'Afghanistan': '10',
 'Albania': '12',
 'Algeria': '5 y',
 'Andorra': '-',
 'Angola': '24 x',
 ...
}

If you check this again alongside the PDF, you will notice it falls apart right at the
point of the first country on a double line. The numbers pulled in are the ones from
the Birth registration column:

{
 ...
 'Bolivia (Plurinational State of)': '',
 'Bosnia and Herzegovina': '37',
 'Botswana': '99',
 'Brazil': '99',
 ...
}

112 | Chapter 5: PDFs and Problem Solving in Python

www.it-ebooks.info

http://www.it-ebooks.info/

If you look at the text version of the PDF, you will notice there is a gap between the
numbers when the country is on a double line:

6
46
3

26 y
5
9 y

In the same way we accounted for this in the country name collection, we need to
account for this in data collection. If we have a blank space in our data lines, we need
to make sure we don’t collect it—that way, we only collect the data that matches the
countries we’ve been collecting. Update your code to the following:

for line in openfile:
 if country_line:
 print '%r' % line
 if previous_line in double_lined_countries:
 line = ' '.join([clean(previous_line), clean(line)])
 countries.append(line)
 elif line not in double_lined_countries:
 countries.append(clean(line))

 elif total_line:
 if len(line.replace('\n', '').strip()) > 0:
 totals.append(clean(line))

 country_line = turn_on_off(line, country_line, previous_line,
 'and areas')

 total_line = turn_on_off(line, total_line, previous_line,
 'total')
 previous_line = line

We know from experience the PDF uses newlines as blank lines. On this line, the
code replaces newlines with nothing and strips whitespace to clean it. Then this
code tests whether the string still has a length greater than zero. If so, we know
there is data and we can add it to our data (totals) list.

After running our updated code, things fall apart again at our first double line. This
time we are pulling in those Birth registration numbers again, aligned with our first
double-lined country. All the following values are also incorrect. Let’s go back to the
text file and figure out what is happening. If you look at the numbers in that column
in the PDF, you can find the pattern in the text version of the PDF starting on line
number 1251:

1250
1251 total
1252 –

Parsing PDFs Using pdfminer | 113

www.it-ebooks.info

http://www.it-ebooks.info/

1253 5 x
1254 26
1255 –
1266 –

If you look closely, you will notice the title of the Birth registration column ends in
total:

266 Birth
267 registration
268 (%)+
269 2005–2012*
270 total
271 37
272 99

Right now the function collecting totals is looking for total, so this column is getting
picked up before we even get to the next line of countries. We also see that the Violent
discipline (%) column has a label for total with a blank line above it. This follows the
same pattern as the total we want to collect.

Encountering back-to-back bugs likely means the problem exists in the larger logic
you’ve constructed. Because we started our script using these on/off switches, to fix
the underlying problem we would need to rework the logic there. We’d need to figure
out how to best determine the right column, maybe by collecting column names and
sorting them. We might need to determine a way to see if the “page” has changed. If
we keep quick-fixing the solution, we will likely run into more errors.

Only spend as much time on a script as you think you need to
invest. If you are trying to build a sustainable process you can run
on a large dataset multiple times over a long period, you are going
to want to take the time to carefully consider all of the steps.

This is the process of programming—write code, debug, write code, debug. No mat‐
ter how experienced a computer programmer you are, there will be moments when
you introduce errors in your code. When learning to code, these moments can be
demoralizing. You might think, “Why isn’t this working for me? I must not be good at
this.” But that’s not true; programming takes practice, like anything else.

At this point, it’s clear our current process isn’t working. Based on what we now know
about the text file, we can tell we began with a false notion that the file defines the
beginning and end of each section using text. We could begin again with this file,
starting at a new point; however, we want to explore some other ways of problem
solving to fix the errors and get the data we want.

114 | Chapter 5: PDFs and Problem Solving in Python

www.it-ebooks.info

http://www.it-ebooks.info/

Learning How to Solve Problems
There are a variety of exercises you can try to parse the PDF script while also chal‐
lenging your ability to write Python. First, let’s review our code so far:

pdf_txt = 'en-final-table9.txt'
openfile = open(pdf_txt, "r")

double_lined_countries = [
 'Bolivia (Plurinational \n',
 'Democratic People\xe2\x80\x99s \n',
 'Democratic Republic \n',
 'Lao People\xe2\x80\x99s Democratic \n',
 'Micronesia (Federated \n',
 'Saint Vincent and \n',
 'The former Yugoslav \n',
 'United Republic \n',
 'Venezuela (Bolivarian \n',
]

def turn_on_off(line, status, prev_line, start, end='\n', count=0):
 """
 This function checks to see if a line starts/ends with a certain
 value. If the line starts/ends with that value, the status is
 set to on/off (True/False) as long as the previous line isn't special.
 """
 if line.startswith(start):
 status = True
 elif status:
 if line == end and prev_line != 'and areas':
 status = False
 return status

def clean(line):
 """
 Clean line breaks, spaces, and special characters from our line.
 """
 line = line.strip('\n').strip()
 line = line.replace('\xe2\x80\x93', '-')
 line = line.replace('\xe2\x80\x99', '\'')

 return line

countries = []
totals = []
country_line = total_line = False
previous_line = ''

Learning How to Solve Problems | 115

www.it-ebooks.info

http://www.it-ebooks.info/

for line in openfile:
 if country_line:
 if previous_line in double_lined_countries:
 line = ' '.join([clean(previous_line), clean(line)])
 countries.append(line)
 elif line not in double_lined_countries:
 countries.append(clean(line))

 elif total_line:
 if len(line.replace('\n', '').strip()) > 0:
 totals.append(clean(line))

 country_line = turn_on_off(line, country_line, previous_line,
 'and areas')
 total_line = turn_on_off(line, total_line, previous_line,
 'total')
 previous_line = line

import pprint
data = dict(zip(countries, totals))
pprint.pprint(data)

There are multiple solutions to the problems we are facing; we’ll walk through some
of them in the following sections.

Exercise: Use Table Extraction, Try a Different Library
After scratching our heads at the perplexities illustrated by this PDF-to-text conver‐
sion, we went searching for alternatives to using pdfminer for table extraction. We
came across pdftables, which is a presumed-defunct library (the last update from
the original maintainers was more than two years ago).

We installed the necessary libraries, which can be done simply by running pip
install pdftables and pip requests install. The maintainers didn’t keep all the
documentation up to date, so certain examples in the documentation and
README.md were blatantly broken. Despite that, we did find one “all in one” func‐
tion we were able to use to get at our data:

from pdftables import get_tables

all_tables = get_tables(open('EN-FINAL Table 9.pdf', 'rb'))

print all_tables

Let’s start a new file for our code and run it (pdf_table_data.py). You should see a
whirlwind of data that looks like the data we want to extract. You will notice not all of
the headers convert perfectly, but it seems every line is contained in the all_tables
variable. Let’s take a closer look to extract our headers, data columns, and notes.

116 | Chapter 5: PDFs and Problem Solving in Python

www.it-ebooks.info

http://pdftables.readthedocs.org/
http://bit.ly/pdftables_install
http://www.it-ebooks.info/

You might have noticed all_tables is a list of lists (or a matrix). It has every row, and
it also has rows of rows. This probably is a good idea in table extraction, because
that’s essentially what a table is—columns and rows. The get_tables function returns
each page as its own table, and the each of those tables has a list of rows with a con‐
tained list of columns.

Our first step is to find the titles we can use for our columns. Let’s try viewing the first
few rows to see if we can identify the one containing our column headers:

print all_tables[0][:6]

Here we are just looking at the first page’s first six rows:

... [u'',
 u'',
 u'',
 u'',
 u'',
 u'',
 u'Birth',
 u'Female',
 u'genital mutila',
 u'tion/cutting (%)+',
 u'Jus',
 u'tification of',
 u'',
 u'',
 u'E'],
 [u'',
 u'',
 u'Child labour (%',
 u')+',
 u'Child m',
 u'arriage (%)',
 u'registration',
 u'',
 u'2002\u201320',
 u'12*',
 u'wife',
 u'beating (%)',
 u'',
 u'Violent disciplin',
 u'e (%)+ 9'],
 [u'Countries and areas',
 u'total',
 u'2005\u20132012*male',
 u'female',
 u'2005married by 15',
 u'\u20132012*married by 18',
 u'(%)+ 2005\u20132012*total',
 u'prwomena',
 u'evalencegirlsb',

Learning How to Solve Problems | 117

www.it-ebooks.info

http://www.it-ebooks.info/

 u'attitudessupport for thepracticec',
 u'2male',
 u'005\u20132012*female',
 u'total',
 u'2005\u20132012*male',
 u'female'],...

We can see the titles are included in the first three lists, and they are messy. However,
we can also see from our print statement that the rows are actually fairly clean. If we
manually set up our titles by comparing them to the PDF, as shown here, we might
have a clean dataset:

headers = ['Country', 'Child Labor 2005-2012 (%) total',
 'Child Labor 2005-2012 (%) male',
 'Child Labor 2005-2012 (%) female',
 'Child Marriage 2005-2012 (%) married by 15',
 'Child Marriage 2005-2012 (%) married by 18',
 'Birth registration 2005-2012 (%)',
 'Female Genital mutilation 2002-2012 (prevalence), women',
 'Female Genital mutilation 2002-2012 (prevalence), girls',
 'Female Genital mutilation 2002-2012 (support)',
 'Justification of wife beating 2005-2012 (%) male',
 'Justification of wife beating 2005-2012 (%) female',
 'Violent discipline 2005-2012 (%) total',
 'Violent discipline 2005-2012 (%) male',
 'Violent discipline 2005-2012 (%) female']

for table in all_tables:
 for row in table:
 print zip(headers, row)

Adds all of our headers, including the country names, to one list. We can now zip
this list with rows to have our data aligned.

Uses the zip method to zip together the headers with each row.

We can see from the output of our code that we have matches for some of the rows,
but there are also many rows that are not country rows (similar to what we saw ear‐
lier when we found extra spaces and newlines in our table).

We want to programmatically solve this problem with some tests based on what we’ve
learned so far. We know some of the countries span more than one row. We also
know the file uses dashes (-) to show missing data, so completely empty rows are not
actual data rows. We know from our previous print output that the data starts for
each page on the fifth row. We also know the last row we care about is Zimbabwe.
Let’s combine our knowledge and see what we get:

for table in all_tables:
 for row in table[5:]:

118 | Chapter 5: PDFs and Problem Solving in Python

www.it-ebooks.info

http://www.it-ebooks.info/

 if row[2] == '':
 print row

Isolates only the rows for each page we want, meaning only the slice from the
fifth index onward

If there is data that looks null, prints out the row to see what’s in that row

When you run the code, you’ll see there are some random blank rows scattered
throughout the list that aren’t part of the country names. Maybe this is the cause of
our problems in the last script. Let’s try to just get the country names put together
and skip other blank rows. Let’s also add in the test for Zimbabwe:

first_name = ''

for table in all_tables:
 for row in table[5:]:
 if row[0] == '':
 continue
 if row[2] == '':
 first_name = row[0]
 continue
 if row[0].startswith(' '):
 row[0] = '{} {}'.format(first_name, row[0])
 print zip(headers, row)
 if row[0] == 'Zimbabwe':
 break

If the data row is missing index 0, it has no country name and is a blank row. The
next line skips it using continue, which is a Python keyword that tells the for
loop to go to the next iteration.

If the data row is missing index 2, we know this is probably the first part of a
country name. This line saves the first part of the name in a variable first_name.
The next line moves on to the next row of data.

If the data row starts with spaces, we know it’s the second part of a country name.
We want to put the name back together again.

If we are right in our hypothesis, we can match these things by printing out the
results for human review. This line prints out each iteration so we can see them.

When we reach Zimbabwe, this line breaks out of our for loop.

Most of the data looks good, but we are still seeing some anomalies. Take a look here:

[('Country', u'80 THE STATE OF T'),
('Child Labor 2005-2012 (%) total', u'HE WOR'),
('Child Labor 2005-2012 (%) male', u'LD\u2019S CHILDRE'),

Learning How to Solve Problems | 119

www.it-ebooks.info

http://www.it-ebooks.info/

('Child Labor 2005-2012 (%) female', u'N 2014'),
('Child Marriage 2005-2012 (%) married by 15', u'IN NUMBER'),
('Child Marriage 2005-2012 (%) married by 18', u'S'),
('Birth registration 2005-2012 (%)', u''),
.....

We see the line number is at the beginning of the section we thought was the country
name. Do you know any countries that have numbers in their name? We sure don’t!
Let’s put in a test for numbers and see if we can lose the bad data. We also noticed our
two-line countries are not properly mapping. From the looks of it, the pdftables
import autocorrected for spaces at the beginning of lines. How kind! Now we should
add in a test and see if the very last line has a first_name or not:

from pdftables import get_tables
import pprint

headers = ['Country', 'Child Labor 2005-2012 (%) total',
 'Child Labor 2005-2012 (%) male',
 'Child Labor 2005-2012 (%) female',
 'Child Marriage 2005-2012 (%) married by 15',
 'Child Marriage 2005-2012 (%) married by 18',
 'Birth registration 2005-2012 (%)',
 'Female Genital mutilation 2002-2012 (prevalence), women',
 'Female Genital mutilation 2002-2012 (prevalence), girls',
 'Female Genital mutilation 2002-2012 (support)',
 'Justification of wife beating 2005-2012 (%) male',
 'Justification of wife beating 2005-2012 (%) female',
 'Violent discipline 2005-2012 (%) total',
 'Violent discipline 2005-2012 (%) male',
 'Violent discipline 2005-2012 (%) female']

all_tables = get_tables(open('EN-FINAL Table 9.pdf', 'rb'))

first_name = False
final_data = []

for table in all_tables:
 for row in table[5:]:
 if row[0] == '' or row[0][0].isdigit():
 continue
 elif row[2] == '':
 first_name = row[0]
 continue
 if first_name:
 row[0] = u'{} {}'.format(first_name, row[0])
 first_name = False
 final_data.append(dict(zip(headers, row)))
 if row[0] == 'Zimbabwe':
 break

pprint.pprint(final_data)

120 | Chapter 5: PDFs and Problem Solving in Python

www.it-ebooks.info

http://www.it-ebooks.info/

2 It does seem there are some active GitHub forks that may be maintained and supported. We encourage you to
keep an eye on them for your PDF table parsing needs.

Manipulates the country name entry in the row if it has a first_name

Sets first_name back to False, so our next iteration operates properly

We now have our completed import. You’ll need to further manipulate the data if you
want to match the exact structure we had with our Excel import, but we were able to
preserve the data in our rows from the PDF.

pdftables is not actively supported, and the people who developed
it now only offer a new product to replace it as a paid service. It’s
dangerous to rely on unsupported code, and we can’t depend on
pdftables to be around and functional forever.2 Part of belonging
to the open source community, however, is giving back; so we
encourage you to find good projects and help out by contributing
and publicizing them in the hopes that projects like pdftables stay
open source and continue to grow and thrive.

Next, we’ll take a look at some other options for parsing PDF data, including cleaning
it by hand.

Exercise: Clean the Data Manually
Let’s talk about the elephant in the room. Throughout this chapter, you might have
wondered why we haven’t simply edited the text version of the PDF for easier pro‐
cessing. You could do that—it’s one of many ways to solve these problems. However,
we challenge you to process this file using Python’s many tools. You won’t always be
able to edit PDFs manually.

If you have a difficult PDF or other file type presenting issues, it’s possible extraction
to a text file and some hand–data wrangling are in order. In those cases, it’s a good
idea to estimate how much time you’re willing to spend on manual manipulation and
hold yourself to that estimate.

For more on data cleanup automation, check out Chapter 8.

Exercise: Try Another Tool
When we first started to look for a Python library to use for parsing PDFs, we found
slate—which looked easy to use but required some custom code—by searching the
Web to see what other people were using for the task.

Learning How to Solve Problems | 121

www.it-ebooks.info

https://github.com/drj11/pdftables/network
https://pdftables.com/
http://www.it-ebooks.info/

To see what else was out there, instead of searching for “parsing pdfs python,” we
tried searching for “extracting tables from pdf,” which gave us more distinct solutions
for the table problem (including a blog post reviewing several tools).

With a small PDF like the one we are using, we could try Tabula. Tabula isn’t always
going to be the solution, but it has some good capabilities.

To get started with Tabula:

1. Download Tabula.
2. Launch the application by double-clicking on it; this will launch the tool in your

browser.
3. Upload the child labor PDF.

From here, you need to adjust the selection of the content Tabula tries to grab. Get‐
ting rid of the header rows enables Tabula to identify the data on every page and
automatically highlight it for extraction. First, select the tables you are interested in
(see Figure 5-3).

Figure 5-3. Select tables in Tabula

122 | Chapter 5: PDFs and Problem Solving in Python

www.it-ebooks.info

http://bit.ly/extract_data_from_pdf
http://tabula.technology/
http://bit.ly/extract_data_from_pdf
http://www.it-ebooks.info/

Next, download the data (see Figure 5-4).

Figure 5-4. Download screen in Tabula

Click “Download CSV” and you will get something that looks like Figure 5-5.

Figure 5-5. Exacted data in CSV form

It’s not perfect, but the data is cleaner than we received from pdfminer.

Learning How to Solve Problems | 123

www.it-ebooks.info

http://www.it-ebooks.info/

The challenge will be to take the CSV you created with Tabula and parse it. It is dif‐
ferent from the other CSVs we parsed (in Chapter 3) and a little messier. If you get
stumped, put it aside and come back to it after reading Chapter 7.

Uncommon File Types
So far in this book, we have covered CSV, JSON, XML, Excel, and PDF files. Data in
PDFs can be difficult to parse, and you may think the world of data wrangling can’t
get any worse—sadly, it can.

The good news is, there’s probably no problem you will face that someone hasn’t
solved before. Remember, asking the Python or greater open source communities for
help and tips is always a great solution, even if you come away learning you should
keep looking for more accessible datasets.

You may encounter problems if the data has the following attributes:

• The file was generated on an old system using a an uncommon file type.
• The file was generated by a proprietary system.
• The file isn’t launchable in a program you have.

Solving problems related to uncommon file types is simply a matter of building on
what you have already learned:

1. Identify the file type. If this is not easily done through the file extension, then use
the python-magic library.

2. Search the Internet for “how to parse <file extension> in Python,” replacing “<file
extension>” with the actual file extension.

3. If there is no obvious solution, try opening the file in a text editor or reading the
file with Python’s open function.

4. If the characters look funky, read up on Python encoding. If you are just getting
started with Python character encoding, then watch the PyCon 2014 talk “Char‐
acter encoding and Unicode in Python”.

Summary
PDF and other hard-to-parse formats are the worst formats you will encounter.
When you find data in one of these formats, the first thing you should do is see if you
can acquire the data in another format. With our example, the data we received in the
CSV format was more precise because the numbers were rounded for the PDF charts.
The more raw the format, the more likely it is to be accurate and easy to parse with
code.

124 | Chapter 5: PDFs and Problem Solving in Python

www.it-ebooks.info

https://pypi.python.org/pypi/python-magic/0.4.6
http://bit.ly/fischer_nam_pycon2014
http://bit.ly/fischer_nam_pycon2014
http://www.it-ebooks.info/

If it is not possible to get the data in another format, then you should try the follow‐
ing process:

1. Identify the data type.
2. Search the Internet to see how other folks have approached the problem. Is there

a tool to help import the data?
3. Select the tool that is most intuitive to you. If it’s Python, then select the library

that makes the most sense to you.
4. Try to convert the data to a an easier to use format.

In this chapter, we learned about the libraries and tools in Table 5-1.

Table 5-1. New Python libraries and tools

Library or tool Purpose

slate Parses the PDF into a string in memory every time the script is run

pdfminer Converts the PDF into text, so you can parse the text file

pdftables Uses pdfminer to first parse into text and then attempt to match rows and find tables

Tabula Offers an interface to extract PDF data into CSV format

Besides learning about new tools, we also learned a few new Python programming
concepts, which are summarized in Table 5-2.

Table 5-2. New Python programming concepts

Concept Purpose

Escaping
characters

Escaping tells the computer there is a space or special character in the file path or name by preceding it with a
backslach (\). One usage is to put a \ in front of spaces to escape them.

\n The \n is the symbol of the end of a line, or a new line in a file.

elif In the process of writing if-else statements, we can add extra conditions to test again—if something, if
else something different, if else another thing, else (finally) the last something.

Functions Functions in Python are used to execute a piece of code. By making reusable code into functions, we can avoid
repeating ourselves.

zip zip is a built-in Python function that takes two iterable objects and outputs them into a list of tuples.

Tuples A tuple is like a list, but immutable, meaning it cannot be updated. To update a tuple, it would have to be
stored as a new object.

Summary | 125

www.it-ebooks.info

http://learnpythonthehardway.org/book/ex10.html
http://learnpythonthehardway.org/book/ex10.html
https://docs.python.org/2/tutorial/controlflow.html
http://bit.ly/python_functions
http://bit.ly/python_zip
http://bit.ly/python_tuple
http://www.it-ebooks.info/

Concept Purpose

dict

conversion
dict is a built-in Python function that attempts to convert the input into a dictionary. To be used properly,
the data should look like key-value pairs.

In the next chapter, we’ll talk about data acquisition and storage. This will provide
more insight on how to acquire alternative data formats. In Chapters 7 and 8, we
cover data cleaning, which will also help in the complexity of processing PDFs.

126 | Chapter 5: PDFs and Problem Solving in Python

www.it-ebooks.info

http://bit.ly/python_dict
http://bit.ly/python_dict
http://www.it-ebooks.info/

CHAPTER 6

Acquiring and Storing Data

Finding your first dataset(s) to investigate might be the most important step toward
acheiving your goal of answering your questions. As we mentioned in Chapter 1, you
should first spend some time refining your question until you have one specific
enough to identify good data about but broad enough to be interesting to you and
others.

Alternatively, you might have a dataset you already find interesting, but no compel‐
ling question. If you don’t already know and trust the data source, you should spend
some time investigating. Ask yourself: is the data valid? Is it updated? Can I rely on
future or current updates and publications?

In this chapter, we will review where you can save and store data for later use. If data‐
bases are new to you, we will review when and how to use them and demonstrate
how to set up a simple database to store your data. For those of you who are already
familiar with databases or if your source is a database, we will cover some basic data‐
base connection structures in Python.

Don’t worry if you haven’t yet decided on a dataset; we will use several examples you
can access in this book’s repository.

We strongly encourage you to come up with some applicable ques‐
tions to use throughout this book so you can better learn by doing.
These could be questions you’ve been meaning to research or ques‐
tions related to the data explored in the book. Even if the questions
you pick are simple, it’s best to learn by writing some of your own
code.

127

www.it-ebooks.info

https://github.com/jackiekazil/data-wrangling
http://www.it-ebooks.info/

Not All Data Is Created Equal
Although we’d like to believe in the veracity and quality of every dataset we see, not
all datasets will measure up to our expectations. Even datasets you currently use could
prove to be ineffective and inefficient sources after further research. As you explore
automated solutions to the data wrangling problems you face, you will find the tools
Python can help determine good versus bad data and help suss out the viability of
your data. We will cover more about those tools as we unravel data cleaning and data
exploration with Python in Chapters 7 and 8, and automation in Chapter 14.

When first getting hold of new data, we recommend performing a data smell test to
decide whether you trust the data and if it is a reliable source of information. You can
ask yourself:

• Is the author a veritable source I can contact if I have questions or concerns?
• Does the data appear to be regularly updated and checked for errors?
• Does the data come with information as to how it was acquired and what types of

samples were used in its acquisition?
• Is there another source of data that can verify and validate this dataset?
• Given my overall knowledge of the topic, does this data seem plausible?

If you answered “yes” to at least three of those questions, you are on the right track! If
you answered “no” to two or more of them, you might need to do some more search‐
ing to find data you can reliably defend.

You might need to reach out to the author and/or organization who
initially published and collected the data to request more informa‐
tion. Often, a quick call or email to the right person can help you
answer one or more of those questions and prove how reliable and
informed your data source is.

Fact Checking
Fact checking your data, although sometimes annoying and exhausting, is paramount
to the validity of your reporting. Depending on your dataset, fact checking may
involve:

• Contacting the source(s) and verifying their latest methods and releases
• Determining other good sources for comparison
• Calling an expert and talking with them about good sources and veritable

information

128 | Chapter 6: Acquiring and Storing Data

www.it-ebooks.info

http://www.it-ebooks.info/

• Researching your topic further to determine whether your sources and/or data‐
sets are credible

Libraries and universities with access to subscriber-only publishing and educational
archives are great resources for fact checking. If you can access tools like LexisNexis,
the Congressional Quarterly Press Library, JSTOR, Cornell University’s arXiv project,
and Google’s Scholar search, you can determine what others have studied and said
about the topic.

Google Search can also help in fact checking. If someone says the data comes from a
published source, chances are there are other folks who have either fact checked that
claim or have proof of that claim. Again, you need to use your own discretion when
reviewing things published online. Is the source veritable? Does the argument seem
cogent and make sense? Does the proof appear valid? Evaluate your results with these
questions in mind.

Government bureaus have vast datasets. If you’d like to study a
phenomenon in your local city, state, or country, you can usually
find someone via phone or email who has a useful dataset. Census
bureaus worldwide regularly release census data and are a good
first place to start if you’re stumped on what questions you’d like to
answer.

Once you have verified and fact checked your initial dataset, it will be easier to both
script it and determine the data’s validity in the future. You can even use some of the
tips you learn throughout this book (particularly in Chapter 14) to create scripts and
auto-update your data.

Readability, Cleanliness, and Longevity
If your dataset appears completely illegible, there is still hope: you can use the lessons
in Chapter 7 to clean it with code. Luckily, if it was created by a computer, it can likely
be read by a computer. More difficulty exists in attempting to get data from “real life”
onto our computers. As we saw in Chapter 5, PDFs and uncommon data file types
can be difficult, but not impossible to work with.

We can use Python to help us read illegible data, but the illegibility may mean the
data doesn’t come from a good source. If it is massive and generated by a computer,
that is one thing—database dumps are never pretty. However, if the data you have is
illegible and from a human source, it may point to an issue of data cleanliness and
veritability.

Readability, Cleanliness, and Longevity | 129

www.it-ebooks.info

http://lexisnexis.com
http://library.cqpress.com
http://jstor.org
http://arxiv.org
http://scholar.google.com/
http://www.it-ebooks.info/

Another issue you face is whether your data has already been cleaned. You can deter‐
mine this by asking more about how the data is collected, reported, and updated. You
should be able to determine:

• How clean is the data?
• Has someone taken the time to show statistical error rates or update erroneous

entries or misreported data?
• Will further updates be published or sent to you?
• What methods were used in the collection of the data, and how were those meth‐

ods verified?

If your source uses standardized and rigorous research and collec‐
tion methods, you can likely reuse your cleaning and reporting
scripts with little modification for years to come. Those systems
don’t normally change regularly (as change is both costly and time-
intensive). Once you’ve scripted your cleanup, you can easily pro‐
cess next year’s data and skip directly to data analysis.

In addition to cleanliness and readability, you care about the longevity of your data.
Are you dealing with regularly collected and updated data? On what schedule is the
data released and updated? Knowing how often an organization updates its data will
help you determine your ability to use the data for years to come.

Where to Find Data
Just as there is more than one way to verify a source or script a PDF parser, there are
many ways to find data. In this section, we’ll review the methods you can use both on
and offline.

Using a Telephone
Look at the data file and ask yourself, how did the data get there? File types like Excel,
PDF, or even Word usually involve a human in the process, and that person got the
data from a source.

If you identify the person who collected the data, you might be able to get ahold of
the raw data. This raw data may be in an easy-to-parse file format, like a CSV or data‐
base. The person you speak with can also answer questions about methods of collec‐
tion and update timelines.

Here are some tips for finding a human from a data file:

130 | Chapter 6: Acquiring and Storing Data

www.it-ebooks.info

http://www.it-ebooks.info/

• Search the file for contact information.
• Look for a byline—if there is no name, look for the organization.
• Search for the filename and the title of the document on the Web.
• Look at the file metadata by right-clicking and selecting “Properties” on Win‐

dows or “Get Info” on a Mac.

Reach out to any person you find. If that is not the person who created the file, then
simply ask them if they know who did. Don’t be shy—your interest in their topic of
study and work can be refreshing and flattering.

Dealing with a Communications Official
If you run into a situation where the file was generated by an organization that wants
you to talk to their communications representative, this can mean delays. Remember
the game Telephone, where one person says something to another person and that
person repeats what they heard to the next person and by the end of the chain the
phrase is unrecognizable?

You can do two things to move this communication along efficiently. First, work to
build trust. If there are no competing interests, share the work you are interested in
doing and how you will attribute the organization as your data source. This indicates
you are an indirect advocate for their work and the organization will gain good press
for sharing information. Second, ask the communications representative for a confer‐
ence call or supervised discussion. By communicating via telephone rather than an
email thread, you can get accurate answers to your questions in a timely fashion.

After you find someone to reach out to, try to reach them by phone or in person.
Emails are easy to misread and usually end in extended messaging. Here are some
example questions to help you think about what to ask:

• Where did you get the data on pages 6 through 200?
• Does it come in other formats, such as JSON, CSV, XML, or a database?
• How was the data gathered?
• Can you describe the data collection methods?
• What do the abbreviations mean?
• Will this data be updated? How and when?
• Is there anyone else who can add more information?

Depending on your time constraints and the goal of your project, you may want to
get started with data exploration while you wait for your questions to be answered.

Where to Find Data | 131

www.it-ebooks.info

http://www.it-ebooks.info/

US Government Data
For those interested in studying phenomena in the United States, recent pushes by
the Obama administration to release readily accessible data online have provided easy
access to regular govenment agency reporting. A quick browse on Data.gov reveals
storm data, graduation and dropout rates, endangered species data, crime statistics,
and many other interesting datasets.

Beyond federal data, states and local agencies have their own sites to release data—
we’ve highlighted a few here:

• Education data
• Election results
• Census data
• Environmental data
• Labor statistics

If you can’t find the information you need publicly listed, do not hesitate to give the
agency or bureau a call and request data over the phone. Many government offices
have interns and staffers who handle public requests for information.

FOIA How-To
You can submit a Freedom of Information Act (or FOIA) request to any local, state,
or federal government agency in the United States. This request should be simple and
straightforward. Depending on what information you are looking for and how specif‐
ically you can describe it, your mileage may vary.

The US Goverment has a FOIA website you can use to submit and track your
requests for certain agencies; however, most agencies have instructions on how to
submit FOIA requests on their own sites. In your request, you should include contact
information, a description of what records you seek, and what you are willing to pay
if there are reproduction fees.

It’s good practice to try to be fairly specific about what records you are looking for,
without unnecessarily limiting your search. As you can imagine, being too broad
might mean the agency returns millions of records (which you now have to sort
through and potentially pay for). Alternatively, if you are overly specific, it could
mean you miss a relevant record that would shed more light on the topic. Of course,
you can always submit more FOIA requests based on the information you find with
your first request. That’s half the fun, right?

132 | Chapter 6: Acquiring and Storing Data

www.it-ebooks.info

http://data.gov
http://bit.ly/storm_events
http://bit.ly/grad_dropout_rates_2011-12
http://bit.ly/endandered_density
http://bit.ly/total_crime_index
http://datainventory.ed.gov/InventoryList
http://www.fec.gov/pubrec/electionresults.shtml
http://census.ire.org/
http://www.epa.gov/enviro/about-data
http://bls.gov
http://bit.ly/foia_online
http://www.it-ebooks.info/

If you would like to request government and agency information outside of the Uni‐
ted States, Wikipedia has a great list of Freedom of Information laws across the globe.
For more on FOIA in the United States, see the Electronic Frontier Foundation’s tips.

Government and Civic Open Data Worldwide
Depending on what country you want to research and whether you live there, there
are many ways to acquire government data. Because we are more familiar with US
policies, we do not claim this is an extensive listing of possibilities. If you come across
other useful open data not covered in this book that you’d like to share, feel free to
reach out to us!

We still recommend fact checking government datasets, particu‐
larly if the government has a history of human rights violations.
Use your best judgment when approaching all data and do not hes‐
itate to pick up the phone or email the listed contact to further
inquire about data collection methods.

EU and UK
If you are interested in data from the European Union or the United Kingdom, there
are many data portals available. Several of the following sites are put together by
organizations and open data enthusiasts, so feel free to reach out directly to the site
owner if you are looking for a particular dataset:

• Public Data EU
• Open Data Europa
• Linked Open Data Around-The-Clock
• UK Government Data

Africa
If you are interested in data from African nations, there are many projects working to
amass data and build APIs for developer use. Many African nations also use their
own open data portals (a quick Google search can usually identify these). We’ve sin‐
gled out some useful regional projects:

• Africa Open Data
• Code for South Africa
• Code for Africa

Where to Find Data | 133

www.it-ebooks.info

http://bit.ly/foi_laws
https://www.eff.org/issues/transparency/foia-how-to
http://publicdata.eu/
http://open-data.europa.eu
http://latc-project.eu/
http://data.gov.uk/
http://africaopendata.org/
http://code4sa.org/
http://www.codeforafrica.org/
http://www.it-ebooks.info/

• Open Data for Africa

Asia
If you are interested in data from Asian nations, most run their own open data sites.
We’ve identified a few with impressive datasets and some regional data from organi‐
zations:

• Open Cities Project
• Open Nepal
• National Bureau of Statistics of China
• Open Data Hong Kong
• Indonesian Government Open Data

Non-EU Europe, Central Asia, India, the Middle East, and Russia
Many Central Asian, Central European, and Middle Eastern countries outside of the
EU have their own government open data sites. We have highlighted a few, but your
linguistic skills will be paramount if you know what regions and countries you’d like
to target and want to access data in the native tongue (although Google Chrome will
attempt to translate web pages automatically, so you may still be able to find useful
data even if you don’t speak the language):

• Russian Government Data Website
• PakReport—Pakistan Open Data and Maps
• Open Data India
• Turkey Open Statistics

South America and Canada
Many South American nations have their own open data sites, found easily by search.
Canada also has an open data portal for statistics. We have highlighted a few sites but
encourage you to seek out particular sectors or governments you are interested in by
searching online:

• Canada Statistics
• Open Canada
• Open Data Brasil
• Open Data Mexico

134 | Chapter 6: Acquiring and Storing Data

www.it-ebooks.info

http://opendataforafrica.org/
http://www.opencitiesproject.org/
http://data.opennepal.net/
http://www.stats.gov.cn/english/
https://opendatahk.com/
http://data.go.id/
http://data.gov.ru/
http://pakreport.org/
http://www.data.gov.in/
http://www.turkstat.gov.tr/
http://www.rdc-cdr.ca/datasets-and-surveys
http://open.canada.ca/en
http://dados.gov.br/
http://datos.gob.mx/
http://www.it-ebooks.info/

• Open Data Latin America
• Developing in the Caribbean

Organization and Non-Government Organization (NGO) Data
Organizations—both the locally run and international—are great sources for datasets
that cross state or national borders, such as data on climate change, international
business and trade, and global transportation. If your topic is something the govern‐
ment might not collect (data on religious details, drug use, community-based support
networks, etc.) or if the government in question is an unreliable source or lacks an
open data portal, you might be able to find the data via an NGO or open data organi‐
zation. We’ve listed some here, but there are many more fighting for open exchange
and access to data:

• United Nations Open Data
• United Nations Development Program Data
• Open Knowledge Foundation
• World Bank Data
• WikiLeaks
• International Aid and Transparency Datasets
• DataHub
• Population Reference Bureau

Education and University Data
Universities and graduate departments around the world are constantly researching
and releasing datasets, covering everything from advances in biological science to the
interrelatedness of native cultures with neighboring ecological habitats. It’s hard to
imagine a subject not broached within the educational sphere, so universities are a
great place to get the latest topical data. Most researchers are happy to hear someone
is interested in their topic, so we encourage you to reach out to the appropriate
departments and authors directly for more information. If you’re not sure where to
start, here are a few good options:

• Lexis Nexis
• Google Scholar search
• Cornell University’s arXiv project
• UCI Machine Learning Datasets

Where to Find Data | 135

www.it-ebooks.info

http://www.opendatalatinoamerica.org/
http://developingcaribbean.com/
http://data.un.org/
http://open.undp.org/
https://okfn.org/
http://data.worldbank.org/
https://wikileaks.org/
http://www.iatiregistry.org/
http://datahub.io/
http://www.prb.org/DataFinder.aspx
http://lexisnexis.com
http://scholar.google.com
http://arxiv.org
http://archive.ics.uci.edu/ml/
http://www.it-ebooks.info/

• Common Data Set Initiative

Medical and Scientific Data
Similar to universities, scientific and medical research departments and organizations
are an excellent resource for a broad array of data. Navigating scientific research can
prove daunting, but don’t fret—if you can find the datasets used for the research, they
usually come without the same research paper jargon. If you have a specific
researcher or study in mind, we recommend reaching out directly; we’ve collected a
few of the aggregators into the following list:

• Open Science Data Cloud
• Open Science Directory
• World Health Organization Data
• Broad Institute Open Data
• Human Connectome Project (neuro pathway mapping)
• UNC’s Psychiatric Genomics Consortium
• Social Science Datasets
• CDC Medical Data

Crowdsourced Data and APIs
If your idea or question is better answered by crowdsourcing, the Internet and its
many forums, services, and social media outlets allow you to create your own ques‐
tions and answer them with the help of some data mining. Services like Twitter and
Instragram boast billions of users and easy-to-use application programming inter‐
faces (or APIs). APIs are protocols or tools that allow software or code to interact
with another system. In our case, we are usually dealing with web-based APIs where
we can send web requests and ask for data from the service. With normally less than
an hour of set-up time, API access will put millions of records at your fingertips.

We will take a more in-depth look at APIs in Chapter 13, but for now some of the
basic challenges and benefits of using an API are reviewed in Table 6-1.

136 | Chapter 6: Acquiring and Storing Data

www.it-ebooks.info

http://www.commondataset.org/
https://www.opensciencedatacloud.org/publicdata/
http://www.opensciencedirectory.net/
http://www.who.int/gho/database/en/
http://www.broadinstitute.org/scientific-community/data
http://www.humanconnectomeproject.org/
http://www.med.unc.edu/pgc/
http://3stages.org/idata/
http://www.cdc.gov/nchs/fastats/
http://www.it-ebooks.info/

Table 6-1. Using an API

Pros Cons

Immediate access to data you can use Unreliability of mass API system (selection bias)

Vast quantities of data Data overload

You don’t have to worry about storage; you can just access the data from
the service’s storage

Reliability and dependence on access—API
limitations or downtime

As you can see, there are benefits and compromises. If you find an API you want to
use, create a few rules around how you will use it and what to do if it is not accessible
(you may want to store responses locally to avoid downtime issues). Collecting
enough responses over time can also help eliminate some selection bias in your
research.

Outside of social web services, there are a variety of sites where you can post your
own questions and ideas and ask for a crowdsourced reply. Whether you want to go
to an expert forum related to the topic or post a survey and circulate it though your
own channels is up to you, but be aware when using your own research questions and
methods that you must account for whatever size and sampling errors arise. For a
more detailed introduction to writing your own survey along with citations for more
information, the University of Wisconsin’s survey guide can be a good starting point.

For other crowdsourced data, take a look at:

• Gallup Polls
• European Social Survey
• Reuters Polls

The amount of data available is enormous, and it’s no small task sorting through all of
the noise to get a good idea of what questions you can answer and how you should go
about answering them. Let’s walk through a few case studies to give you a better idea
of how to go about pursuing the data that helps answer your questions.

Case Studies: Example Data Investigation
We will outline a few different areas of interest and questions so you have a good idea
of how you can begin.

Case Studies: Example Data Investigation | 137

www.it-ebooks.info

http://bit.ly/survey_guide
http://www.gallup.com/home.aspx
http://www.europeansocialsurvey.org/data/
http://polling.reuters.com/
http://www.it-ebooks.info/

Ebola Crisis
Let’s say you are interested in investigating the Ebola crisis in West Africa. How might
you begin? To start with, you might quickly Google “Ebola crisis data.” You will find
there are many international organizations working to track the spread of the virus,
and those organizations put numerous tools at your disposal. First, you may find the
World Health Organization’s situation report. The WHO site has information on the
latest cases and deaths, interactive maps showing affected regions, and key perfor‐
mance indicators for response measures, and it appears to be updated on a weekly
basis. The data is available in CSV and JSON format, and it’s a veritable, reliable, and
regularly updated source of information.

Rather than stopping at the first result you turn up, you keep digging to see what
other sources are available. Upon further searching, we find a GitHub repository run
by user cmrivers, which is a raw data collection of data sources from a variety of gov‐
ernmental and media sources. Because we know the user and can contact them via
their contact information, we can also verify when was the last time these sources
were updated and ask any questions about the collection methods. The formats are
ones we know how to handle (CSV, PDF files), so they shouldn’t present a problem.

As you dig further, you might focus on one particular question, like “What precau‐
tions are being taken for safe burial?” You find a report on safe and dignified burials
maintained by Sam Libby. Perfect! If and when you have any questions, you can con‐
tact Sam directly.

You’ve found a good initial list of sources, verified they are from organizations you
can trust, and identified someone you can ask for more information as your research
progresses. Now, let’s take a look at another example.

Train Safety
Let’s say you’re interested in train safety in the United States. Maybe your question is:
What are the negative factors affecting train safety? To begin, you might look at some
previous research around train safety. You come across the Federal Railroad Admin‐
istration (FRA), whose core duty is to ensure railroad safety and usability. As you
read some of the reports and fact sheets on the FRA website, you determine most
reports indicate train accidents occur due to poor track maintenance or human error.

You’re interested in the human side of things, so you start digging a little more. You
find that the FRA has numerous reports on railroad employees and safety. You find a
report on sleep patterns of railroad workers, which could shed some light on how
human errors occur. You also find some information about federal regulations for
drug and alcohol testing of railroad employees.

Now you might have more questions you can specify to narrow down what you really
want to know. Maybe your question is now, “How often are railroad accidents caused

138 | Chapter 6: Acquiring and Storing Data

www.it-ebooks.info

http://bit.ly/who_ebola_reports
https://github.com/cmrivers/ebola
https://github.com/cmrivers/ebola
http://bit.ly/burial_teams
https://data.hdx.rwlabs.org/user/libbys
https://www.fra.dot.gov
http://bit.ly/work_sleep_sched_data
http://bit.ly/work_sleep_sched_data
http://bit.ly/fra_drug_alcohol_testing
http://bit.ly/fra_drug_alcohol_testing
http://www.it-ebooks.info/

by alcohol?” Or “How often are train engineers overworked or working while exhaus‐
ted?” You have some initial trusted datasets and the ability to call the FRA and
request more information as your research progresses.

Football Salaries
Now let’s say you’re interested in football (the kind with the feet, not the pigskin one)
salaries. How much are these players making, and how significant is each player’s
impact on his team?

As you first start searching, you determine you should focus on one league, given the
disparate data. Let’s say you choose the English Premier League. You find a listing of
Premier League club salaries on a site you may never have heard of before. It seems
the author has also compiled lists of each team and how much each player is getting
paid. To better understand where the data is coming from and to make sure you can
trust the source, you should reach out to the author listed on the page and get more
information.

If you’re also searching for endorsements, you may come across the Statistica charts
outlining endorsement and salary data for the top-paid football players. You’ll proba‐
bly want to reach out and see if there is updated data on endorsements so you can
compare the most recent season.

Now that you have some salary data, you’ll want to look at statistics on how good the
top-paid players are. You find some player statistics on the Premier League’s website.
This is data you can likely only get by web scraping (more on this in Chapter 11), but
you know you can trust the source. Another search for statistics on players turns up
some more data on top assists. You can also analyze penalty try statistics. Again, you
should investigate the validity of any source you use that’s not easily verified.

Now you can begin your your analysis to see how much each football player’s goals,
red cards, and penalty kicks are worth!

Child Labor
Finally, let’s take a dive into the questions we will be answering with further chapters
in this book. We’ll focus on the international crisis of child labor. When we think
about international topics, we immediately turn to international organizations.

We find UNICEF’s open data site dedicated to reporting on child labor. In fact, UNI‐
CEF has entire datasets on women and children’s well-being and status across the
globe. These might prove fruitful for answering questions such as “Does early mar‐
riage affect child labor rates?”

Case Studies: Example Data Investigation | 139

www.it-ebooks.info

http://bit.ly/epl_salaries_by_club
http://bit.ly/epl_salaries_by_club
http://bit.ly/2014_man_city_salaries
http://bit.ly/2014_man_city_salaries
http://bit.ly/2014_soccer_player_earnings
http://bit.ly/epl_players_index
http://bit.ly/espn_epl_top_assists
http://bit.ly/epl_2015-16_penalties
http://data.unicef.org/child-protection/child-labour.html
http://www.childinfo.org/mics.html
http://www.it-ebooks.info/

When looking for government data, we identify the US Department of Labor’s annual
reports on child labor across the globe. These will be a great cross reference for our
UNICEF datasets.

Additionally, we find the International Labor Organization’s (ILO) trend report on
child labor. The ILO report seems to have links to many different datasets and should
be a good reference for historical data on child labor.

We’ve amassed several datasets to use throughout the next chapters. We’ve included
them all in the data repository so you can use them and follow along.

Now that we’ve explored how to identify questions and find resources, let’s look at
storing our data.

Storing Your Data: When, Why, and How?
Once you’ve located your data, you need a place to store it! Sometimes, you’ll have
received data in a clean, easy-to-access, and machine-readable format. Other times,
you might want to find a different way to store it. We’ll review some data storage tools
to use when you first extract your data from a CSV or PDF, or you can wait and store
your data once it’s fully processed and cleaned (which we will cover in Chapter 7).

Where Should I Store My Data?
Your initial question will be whether to store your data someplace other than in the
files from which you extracted it. Here’s a great set of questions to help you figure this
out:

• Can you open your dataset in a simple document viewer (like Microsoft Word),
without crashing your computer?

• Does the data appear to be properly labeled and organized, so you can easily
pluck out each piece of information?

• Is the data easily stored and moved if you need to use more than one laptop or
computer while working on it?

• Is the data real-time and accessible via an API, meaning you can get the data you
need by requesting it live?

If you answered “yes” to all of these questions, chances are you do not need to worry
about storing your data another way. If you had mixed answers, you might want to
store your data in a database or flat files. If your answer was “no” to all of these ques‐
tions, read on, my friend; we have solutions for you!

140 | Chapter 6: Acquiring and Storing Data

www.it-ebooks.info

http://www.dol.gov/ilab/reports/child-labor/
http://www.dol.gov/ilab/reports/child-labor/
http://bit.ly/child_labour_trends08-12
http://bit.ly/child_labour_trends08-12
https://github.com/jackiekazil/data-wrangling
http://www.it-ebooks.info/

So, let’s say your dataset is disparate: a file from here, a report from there; some of it
easy to download and access, but other bits you might need to copy or scrape from
the Web. We will review how to clean and combine datasets in Chapters 7 and 9, but
now let’s talk about how we can store data in a shared place.

If you are going to be using datasets from multiple computers, it’s
always a good idea to store them on a network or the Internet
(hello cloud computing!), or have them on an external hard drive
or USB stick. Keep this in mind when you are working with a team
who may need data access from different locations or computers. If
you’re working on a single computer, make sure you have a data
backup strategy. The worst thing about losing your laptop will be
losing the data you spent months acquiring and cleaning.

Databases: A Brief Introduction
Databases—learn to love them, love to hate them. As a developer, you’ll likely find
yourself using many different types of databases throughout your education and
work. This section is by no means intended as a comprehensive overview of databa‐
ses, but we aim to provide a brief introduction to basic database concepts. If you
already know and use databases actively, give this section a quick review and move on
to the other storage solutions and when to use them.

Have you ever looked up a number on your phone using Siri? Have you ever searched
Google? Have you ever clicked on a hashtag on Twitter or Instagram? Each of these
actions involves a simple search and a response from a database (or a series of databa‐
ses, or a database cache). You have a question (What funny new Maru videos are on
YouTube?), you ask a particular database (YouTube Search), and get a fun(ny)
response—a listing of search results to enjoy.

In the following sections, we outline two major database types, highlighting the pros
and cons of each as well as their different strengths and weaknesses. For the purposes
of data wrangling, you absolutely do not need to use a database; however, as you
become more advanced at data wrangling and analysis, database use and knowledge
will become more important and help advance your ability to store and analyze data.

If you’re interested in databasing, we will give a few tips on how to use Python with
databases; but we clearly don’t have enough time here to fully cover the topic. We
highly recommend you search out more information, videos, and tutorials based on
your interest in this section.

Relational Databases: MySQL and PostgreSQL
Relational databases are great for data coming from a variety of sources with varying
levels of interconnectedness. Relational data exemplifies its name: if your data has

Databases: A Brief Introduction | 141

www.it-ebooks.info

http://www.it-ebooks.info/

connections similar to a family tree, a relational database like MySQL will likely work
well for you.

Relational data usually uses a series of unique identifiers to actively match datasets. In
SQL, we normally call them IDs. These IDs can be used by other sets of data to find
and match connections. From these connected datasets, we can make what we call
joins, which allow us to access connected data from many different datasets at once.
Let’s look at an example.

I have a really awesome friend. Her name is Meghan. She has black hair and works at
The New York Times. In her spare time, she likes to go dancing, cook food, and teach
people how to code. If I had a database of my friends and used SQL to represent their
attributes, I might break it down like so:

**friend_table:
friend_id
friend_name
friend_date_of_birth
friend_current_location
friend_birthplace
friend_occupation_id

**friend_occupation_table:
friend_occupation_id
friend_occupation_name
friend_occupation_location

**friends_and_hobbies_table:
friend_id
hobby_id

**hobby_details_table:
hobby_id
hobby_name
hobby_level_of_awesome

In my database of friends, each of these sections (marked with **) would be
tables. In relational databasing, tables usually hold information about a specific
topic or object.

Each of the pieces of information a table holds are called fields. In this case, the
friend_id field holds a unique ID for each friend in my friend_table.

With my database, I can ask: What are Meghan’s hobbies? To access the information, I
would say to the database, “Hey, I’m looking for my friend Meghan. She lives in New
York and here is her birthday; can you tell me her ID?” My SQL database will respond
to this query with her friend_id. I can then ask my friend_and_hobbies_table

142 | Chapter 6: Acquiring and Storing Data

www.it-ebooks.info

http://www.it-ebooks.info/

(which properly matches hobby IDs with the friend IDs) what hobbies match up with
this friend ID and it will respond with a list of three new hobby IDs.

Because these IDs are numbers, I want to learn more about what they mean. I ask the
hobby_details_table, “Can you tell me more about these hobby IDs?” and it says,
“Sure! One is dancing, one is cooking food, and one is teaching people how to code.”
Aha! I have solved the riddle, using just an initial friend description.

Setting up and getting data into a relational database can involve many steps, but if
your datasets are complex with many different relationships, it shouldn’t take more
than a few steps to figure out how to join them and get the information you desire.
When building relational databases, spend time mapping out the relations and their
attributes, similar to what we did with the friend database. What are the different
types of data, and how can they be mapped to one another?

In relational database schema, we figure out how we want to match data by thinking
about how we will most often use the data. You want the queries you ask the database
to be easy to answer. Because we thought we might use occupation to help identify a
friend, we put the occupation_id in the friend-table.

Another thing to note is there are several different kinds of relationships. For exam‐
ple, I can have many friends with cooking as a hobby. This is what we call a many-to-
many relationship. If we were to add a table such as pets, that would add a different
kind of relationship—a many-to-one. This is because a few of my friends have more
than one pet, but each pet belongs to only one friend. I could look up all the pets of a
friend by using their friend_id.

If learning more about SQL and relational databases interests you, we recommend
taking a longer look at SQL. Learn SQL The Hard Way and SQLZOO are great first
places to start. There are some slight differences in syntax between PostgreSQL and
MySQL, but they both follow the same basics, and learning one over the other is a
matter of personal choice.

MySQL and Python
If you are familiar with (or learning) MySQL and you’d like to use a MySQL database,
there are Python bindings to easily connect. You will need to perform two steps. First,
you must install a MySQL driver. Then, you should use Python to send authentication
information (user, password, host, database name). There is a great Stack Overflow
write-up covering both.

PostgreSQL and Python
If you are familiar with (or learning) PostgreSQL and you’d like to use a PostgreSQL
database, there are Python bindings for PostgreSQL, too. You will also need to per‐
form two steps: installing a driver and then connecting with Python.

Databases: A Brief Introduction | 143

www.it-ebooks.info

http://sql.learncodethehardway.org/
http://sqlzoo.net
http://bit.ly/mysql_python
http://bit.ly/mysql_python
http://www.it-ebooks.info/

1 For more reading on database migration between SQL and NoSQL databases, check out Matt Asay’s writeup
on migrating Foursquare to a NoSQL database from a relational database. Additionally, there are some Quora
writeups covering migration in the opposite direction.

There are many PostgreSQL drivers for Python, but the most popular one is Psycopg.
Psycopg’s installation page has details about getting it running on your machine and
there is a lengthy introduction on how to use it with Python on the PostgreSQL site.

Non-Relational Databases: NoSQL
Let’s say you like the idea of using a database, but mapping out all those relations
gives you the heebie-jeebies. Maybe it’s just that you don’t really understand how the
data connects right now. Maybe it’s that you have flat data (i.e., nonrelational data that
doesn’t necessarily map well). Or maybe you don’t have a deeper interest in learning
SQL. Luckily, there is a database out there for you.

NoSQL and other nonrelational databases store data in a flat format, usually JSON.
As we discussed in Chapter 3, JSON uses a simple lookup for information. Going
back to the data shared in the previous section about my friend, what if I just had the
data stored in nodes that allow me to look up more information about that friend? It
might look like so:

{
 'name': 'Meghan',
 'occupation': { 'employer': 'NYT',
 'role': 'design editor',
 },
 'birthplace': 'Ohio',
 'hobbies': ['cooking', 'dancing', 'teaching'],
}

As you can see, I can have a simple list of all of my friend’s attributes, without having
to create tables.

What, you may ask, is the benefit of relational data? Depending on who you ask, you
might get very different responses—within computer science and among developers
this is a hotly debated topic. Our opinion is there are many advances SQL has made
to allow for quick lookups when your data is structured with a vast network of rela‐
tions. There are also plenty of advances nonrelational databases have made in speed,
availability, and duplication.

In the end, if you have a stronger interest in learning one over the other, let that guide
your decision rather than determining now what your dataset looks like. If you need
to migrate it one way or another, there are tools that will help you migrate in either
direction.1

144 | Chapter 6: Acquiring and Storing Data

www.it-ebooks.info

http://bit.ly/migrate_rdb_nosql
http://bit.ly/migrate_mongodb_mysql
http://bit.ly/migrate_mongodb_mysql
https://wiki.postgresql.org/wiki/Python
http://initd.org/psycopg/
http://initd.org/psycopg/docs/install.html
https://wiki.postgresql.org/wiki/Psycopg2_Tutorial
http://www.it-ebooks.info/

MongoDB with Python
If you already have data in a nonrelational database structure or you are hoping to
learn by doing, it’s very easy to connect NoSQL databases using Python. Although
there are plenty to choose from, one of the most popular NoSQL database frame‐
works is MongoDB. To use MongoDB, you need to first install the drivers and then
use Python to connect. There was a great “Getting Started with MongoDB” presenta‐
tion at PyCon 2012; this is a useful place to get started learning about MongoDB and
how to connect using Python.

Setting Up Your Local Database with Python
One of the easiest ways to get started with databases and Python is to use a simple
library to help you ramp up quickly. For the purpose of this book, we recommend
starting with Dataset. Dataset is a wrapper library, which means it helps speed devel‐
opment by translating our readable Python code into the database code we want to
work with.

If you already have a SQLite, PostgreSQL, or MySQL database, you can plug it right
in by following the quickstart guide. If you don’t yet have one of those, it will create
one for you as you use the tool. Let’s take a look at getting it running on your
computer.

The first thing you will need to do is install Dataset. If you are already using pip, then
simply type pip install dataset.

You then need to decide on the backend you will use. If you are already using Post‐
greSQL or MySQL, simply set up a new database following the proper syntax for your
chosen database. If you are new to databases, we will use SQLite. First, download
your operating system’s SQLite binary. Open the downloaded file and follow the
installation instructions.

Open your terminal and change (cd) to your project folder holding your Python data
wrangling scripts. To create your new SQLite database, type:

sqlite3 data_wrangling.db

You should see a prompt beginning with sqlite> asking you to enter SQL. Now that
you’ve confirmed you have sqlite3 running on your computer, you can exit the SQLite
terminal by typing .q. Upon exit, list the files in your current folder. You should now
have a file called data_wrangling.db—that’s your database!

Once you have SQLite installed and your first database running, it’s time to get it
working with Dataset. Let’s try the following code in a Python shell:

import dataset

db = dataset.connect('sqlite:///data_wrangling.db')

Databases: A Brief Introduction | 145

www.it-ebooks.info

http://mongodb.org/
http://docs.mongodb.org/ecosystem/drivers/python/
http://bit.ly/pycon2012_presentations
http://dataset.readthedocs.org/en/latest/
http://bit.ly/dataset_quickstart
http://bit.ly/dataset_install
http://www.sqlite.org/download.html
http://www.sqlite.org/download.html
http://www.it-ebooks.info/

my_data_source = {
 'url':
 'http://www.tsmplug.com/football/premier-league-player-salaries-club-by-club/',
 'description': 'Premier League Club Salaries',
 'topic': 'football',
 'verified': False,
}

table = db['data_sources']
table.insert(my_data_source)

another_data_source = {
 'url':
 'http://www.premierleague.com/content/premierleague/en-gb/players/index.html',
 'description': 'Premier League Stats',
 'topic': 'football',
 'verified': True,
}

table.insert(another_data_source)

sources = db['data_sources'].all()

print sources

Creates a Python dictionary of the data we are looking to save. We are saving the
sources for our football research. We added information about the topic, descrip‐
tion, URL, and whether we have verified the data yet.

Creates a new table called data_sources.

Inserts our first data source into our new table.

Shows all of the data sources we have stored in our data_sources table.

You have now set up your first relational table using SQLite, and done your first
Python database interactions. As the book progresses, you will be able to add more
data and tables to your database. Having all of your data stored in one place helps
keep your data organized and your research focused.

When to Use a Simple File
If your dataset is small, most likely a simple file, rather than a database, will do. You
might want to take a look at Chapter 7 and start with some sanitizing techniques
before saving it, but keeping it in a CSV or some other simple file format is perfectly
fine. The same csv module we worked with to import CSVs (see “How to Import
CSV Data” on page 46) also has some easy-to-use writer classes.

146 | Chapter 6: Acquiring and Storing Data

www.it-ebooks.info

http://bit.ly/writer_objects
http://www.it-ebooks.info/

Your main consideration when using simple files is making sure you have easy access
and backup. To manage these needs, you can store your data on a shared network
drive or in a cloud-based service (Dropbox, Box, Amazon, Google Drive). Using one
of these services usually means you will also have backup options, management capa‐
bilities, and the ability to share files. This is extremely helpful for those “oops, I over‐
wrote the data file” moments.

Cloud-Storage and Python
Depending on your cloud storage solution, you should research the best way to get
Python connected to your data. Dropbox has great Python support, and their Getting
Started with Python guide provides a good introduction. Google Drive is a bit more
complex, but the Python Quick start guide will help you through the first steps. There
are also some Google Drive Python API wrappers, like PyDrive, that allow you to use
Google Drive without knowing much Python. We highly recommend GSpread for
managing spreadsheets on Google Drive.

If you have your own cloud servers, you might need to research the best way to con‐
nect to them. Python has built in URL request, FTP (File Transfer Protocol), and
SSH/SCP (Secure Sell/Secure Copy) methods, all documented in the Python stdlib.
We will also cover some useful libraries for managing cloud services in Chapter 14.

Local Storage and Python
The simplest and most straightforward way to store your data is locally. You can open
documents on your filesystem with one line of Python (the open command). You can
also update and save new files as you work with the data using the built-in
file.write method.

Alternative Data Storage
There are many new and interesting ways to store data which don’t involve the afore‐
mentioned paths. Depending on your use case, there may be a better way to store the
data you are looking to use. Here are a few interesting ones:

Hierarchical Data Format (HDF)
HDF is a file-based scalable data solution allowing you to quickly store large
datasets to a filesystem (local or otherwise). If you are already familiar with HDF,
Python has an HDF5 driver, h5py, which connects Python to HDF5.

Hadoop
Hadoop is a big data distributed storage system, allowing you to store and pro‐
cess data across clusters. If you are already working with Hadoop or are familiar

Alternative Data Storage | 147

www.it-ebooks.info

http://bit.ly/python_core_api
http://bit.ly/python_core_api
https://github.com/googledrive/python-quickstart
https://github.com/googledrive/PyDrive
https://github.com/burnash/gspread
https://docs.python.org/2/library/functions.html#open
http://bit.ly/file_write_method
http://www.h5py.org/
http://www.it-ebooks.info/

with Hadoop, Cloudera has a Guide to Python Frameworks for Hadoop with
some great getting-started code samples.

Summary
Congratulations! You’ve gotten through some of the largest questions facing your
project: How can I find useful data? How can I access and store the data? We hope
you feel confident with the sources you have acquired and the veritability of your first
dataset(s). We also hope you have a solid plan for backup and data storage.

You can use the skills you’ve honed in this chapter on future datasets, even if it’s just
spending a few hours on data sites exploring questions that pop into your mind.

You should now feel confident:

• Determining the value and use of a dataset you find
• Picking up the phone to reach out for more information
• Deciding where you might first look for data to answer a question
• Implementing a safe and hassle-free way to store your data
• Validating the data you have found
• Building relational models of the data

You’ve also been introduced to the concepts in Table 6-2.

Table 6-2. New Python and programming concepts and libraries

Concept/library Purpose

Relational databases (e.g., MySQL and PostgreSQL) Storing relational data in an easy way

Non-relational databases (e.g., MongoDB) Storing data in a flat way

SQLite setup and usage Easy-to-use SQL-based storage that works well for simple projects

Dataset installation and usage Easy-to-use Python database wrapper

You’ll be using all of these skills and more as you move forward in future chapters. In
the next chapter, you’ll be learning all about cleaning your data, finding inconsisten‐
cies with the code, and getting it closer to a fully running script or program so you
can analyze your data and output results to share with the world.

148 | Chapter 6: Acquiring and Storing Data

www.it-ebooks.info

http://bit.ly/py-hadoop
https://www.sqlite.org/
https://dataset.readthedocs.org/en/latest/
http://www.it-ebooks.info/

CHAPTER 7

Data Cleanup: Investigation, Matching, and
Formatting

Cleaning up your data is not the most glamourous of tasks, but it’s an essential part of
data wrangling. Becoming a data cleaning expert requires precision and a healthy
knowledge of your area of research or study. Knowing how to properly clean and
assemble your data will set you miles apart from others in your field.

Python is well designed for data cleanup; it helps you build functions around pat‐
terns, eliminating repetitive work. As we’ve already seen in our code so far, learning
to fix repetitive problems with scripts and code can turn hours of manual work into a
script you run once.

In this chapter, we will take a look at how Python can help you clean and format your
data. We’ll also use Python to locate duplicates and errors in our datasets. We will
continue learning about cleanup, especially automating our cleanup and saving our
cleaned data, in the next chapter.

Why Clean Data?
Some data may come to you properly formatted and ready to use. If this is the case,
consider yourself lucky! Most data, even if it is cleaned, has some formatting incon‐
sistencies or readability issues (e.g., acronyms or mismatched description headers).
This is especially true if you are using data from more than one dataset. It’s unlikely
your data will properly join and be useful unless you spend time formatting and
standardizing it.

149

www.it-ebooks.info

http://www.it-ebooks.info/

Cleaning your data makes for easier storage, search, and reuse. As
we explored in Chapter 6, it’s much easier to store your data in
proper models if it’s cleaned first. Imagine if you had columns or
fields in your dataset which should be saved as a particular data
type (such as dates or numbers or email addresses). If you can
standardize what you expect to see and clean or remove records
that don’t fit, then you ensure your data’s consistency and eliminate
hard work later when you need to query assets in your dataset.

If you’d like to present your findings and publish your data, you’ll want to publish the
cleaned version. This gives other data wranglers the opportunity to easily import and
analyze the data. You can also publish the raw data alongside your finished dataset
with notations on what steps you took to clean and normalize it.

As we work on cleaning our data, for our benefit and the benefit of others, we want to
document the steps we have taken so we can accurately defend our dataset and its use
in our studies. By documenting our process, we ensure we can reproduce it when new
data comes out.

One powerful tool if you are using IPython to interact with your
data is to use the IPython magic commands, such as %logstart or
to start logging and %save to save your session for later use. This
way you can begin building scripts, not just hacking in a Python
terminal. As your Python knowledge increases, you can refine the
scripts to share with others. For more reading on IPython, check
out Appendix F.

Let’s start by investigating data cleaning basics, learning how to format our data and
properly match datasets together.

Data Cleanup Basics
If you have been working through the code in the preceding chapters, you have
already used some data cleanup concepts. In Chapter 4, we worked on importing data
from Excel sheets and creating a dictionary to represent that data. Modifying and
standardizing the data into a new data format is data cleanup.

Because we’ve already investigated some UNICEF datasets related to child labor (see
“Child Labor” on page 139), let’s dive into the raw UNICEF data. The initial datasets
most UNICEF reports accumulate are the Multiple Indicator Cluster Surveys (MICS).
These surveys are household-level surveys performed by UNICEF workers and vol‐
unteers to help research the living conditions of women and children throughout the
world. In looking through the latest surveys, we pulled some data from Zimbabwe’s
latest MICS to analyze.

150 | Chapter 7: Data Cleanup: Investigation, Matching, and Formatting

www.it-ebooks.info

http://bit.ly/logstart
http://bit.ly/ipython_save
http://mics.unicef.org/surveys
http://www.it-ebooks.info/

To begin our analysis, we downloaded the latest surveys after first requesting access
for educational and research purposes from UNICEF. After getting access (which
took approximately a day), we were able to download the raw datasets. Most MICS
raw data is in SPSS format, or .sav files. SPSS is a program used by social scientists to
store and analyze data. It’s a great tool for some social science statistics, but it’s not
very useful for our Python needs.

In order to convert the SPSS files to something we can use, we used the open source
project PSPP to view the data, and then a few simple R commands to convert the
SPSS data into .csv files for easy use with Python. There are some good projects using
Python to interact with SPSS files as well, but they required more work and setup
than the R commands. You’ll find the updated CSV in this book’s repository.

Let’s get started with our data cleanup by diving into the files and taking a look at the
data. Often your first cleanup steps come from a simple visual analysis. Let’s dig into
our files and see what we find!

Identifying Values for Data Cleanup
We begin our data cleanup with a simple review of the fields we find and any visual
inconsistencies we can see. If you start your data cleanup by making your data look
cleaner, you will have a good idea of the initial problems you must conquer as you
normalize your data.

Let’s take a look at our mn.csv file. The file contains raw data and uses codes (acro‐
nyms) as headers which likely contain some easily translatable meaning. Let’s take a
look at the column headers in our mn.csv file:

"","HH1","HH2","LN","MWM1","MWM2", ...

Each of these represents a question or data in the survey, and we’d like the more
human-readable versions. Searching via Google, we locate the human-readable values
for those headings on the World Bank site for sharing MICS data.

Take time to first investigate whether data like the abbreviation list‐
ing on the World Bank site exists to help with your cleanup needs.
You can also pick up the phone and give the organization a call to
ask if they have an easy-to-use abbreviation list.

Using some web scraping skills you’ll become acquainted with in Chapter 11, we were
able to get a CSV of these headers with their English variants and the questions used
to calculate their values from the World Bank site for MICS data. We’ve included the
new headers from our web scraper in the book’s repository (mn-headers.csv). We want
to match up this data with our survey data so we have readable questions and
answers. Let’s look at a few ways we can do that.

Data Cleanup Basics | 151

www.it-ebooks.info

https://www.gnu.org/software/pspp/
http://bit.ly/spss_to_csv
http://bit.ly/spss_to_csv
https://pypi.python.org/pypi/savReaderWriter
https://pypi.python.org/pypi/savReaderWriter
https://github.com/jackiekazil/data-wrangling
http://bit.ly/selected_papua_mics2011
http://www.it-ebooks.info/

Replacing headers
The most straightforward and obvious way to make the headers more readable is to
merely replace the short headers with longer English ones we can understand. How
might we go about header substitution using Python? First, we’ll need to import both
the mn.csv and mn-headers.csv files using the csv module we learned about in Chap‐
ter 3 (see the following code for importing). Throughout this chapter and the follow‐
ing chapters, feel free to write code in either scripts or in your terminal (such as
IPython). This will allow you to interact with the data before saving it to a file:

from csv import DictReader

data_rdr = DictReader(open('data/unicef/mn.csv', 'rb'))
header_rdr = DictReader(open('data/unicef/mn_headers.csv', 'rb'))

data_rows = [d for d in data_rdr]
header_rows = [h for h in header_rdr]

print data_rows[:5]
print header_rows[:5]

This code writes the iterable DictReader object into a new list so we can preserve
the data and reuse it. We’re using the list generator format so we can do it in one
simple line of code that’s readable and clear.

This prints just a slice of the data, by using the Python list’s slice method to
show the first five elements of our new lists and get an idea of the content.

In the fourth line of code, we used a list generator function for Python. Python list
generators have the following format:

[func(x) for x in iter_x]

A list generator starts and ends with list brackets. Then it takes an iterable object
(iter_x) and passes each row or value from iter_x into func(x) to create new values
for the new list. Here, we are not doing anything with the function part of the list
generator; we only want the row as it currently stands. In future chapters, we’ll use
the ability to pass each row or value from the iterable into a function to clean or
change the data before we put it into the list. List generators are a great example of the
easy-to-read and easy-to-use syntax Python is well known for. You could achieve the
same functionality using a for loop, but that would require more code:

new_list = []
for x in iter_x:
 new_list.append(func(x))

As you can see, using a list generator saves us a few lines of code, and offers superior
performance and memory efficiency.

152 | Chapter 7: Data Cleanup: Investigation, Matching, and Formatting

www.it-ebooks.info

http://www.it-ebooks.info/

We want to replace the data_row dictionary headers with the readable headers from
our file. As we can see from our output, the header_rows dictionaries hold both the
short and longer values. The current short headers are contained under the Name
field, and the longer, more readable headers are saved under the Label field. Let’s see
how easily we can match them up using some Python string methods:

for data_dict in data_rows:
 for dkey, dval in data_dict.items():
 for header_dict in header_rows:
 for hkey, hval in header_dict.items():
 if dkey == hval:
 print 'match!'

Iterates over each of our data records. We will try to use the keys in each of these
dictionaries to match our headers.

Iterates over each key and value in each data row so we can replace all of the keys
with the more readable header labels (to view each key-value pair in the data dic‐
tionary, we use the Python dictionary’s items method).

Iterates over all header rows of data, so we can get the readable labels. It’s not the
fastest way to do this, but it makes sure we don’t miss any.

Prints found matches between the data list keys (MWB3, MWB7, MWB4, MWB5…) and
the header dictionary data.

By running the code, we see we have many matches. Let’s see if we can use similar
logic to replace the titles with better ones. We know we can match them really easily.
However, we only found the row we wanted to match. Let’s see if we can figure out
how to match the keys from the data list with the values from the row in the header
row we found:

Data Cleanup Basics | 153

www.it-ebooks.info

http://www.it-ebooks.info/

new_rows = []

for data_dict in data_rows:
 new_row = {}
 for dkey, dval in data_dict.items():
 for header_dict in header_rows:
 if dkey in header_dict.values():
 new_row[header_dict.get('Label')] = dval
 new_rows.append(new_row)

Creates a new list to populate with cleaned rows.

Creates a new dictionary for each row.

Here, we use the dictionary’s values method instead of iterating over every key
and value of the header rows. This method returns a list of only the values in that
dictionary. We are also using Python’s in method, which tests whether an object
is a member of a list. For this line of code, the object is our key, or the abbreviated
string, and the list is the values of the header dictionary (which contains the
abbreviated headers). When this line is true, we know we have found the match‐
ing row.

Adds to our new_row dictionary every time we find a match. This sets the dictio‐
nary key equal to the Label value in the header row, replacing those short Name
values with the longer, more readable Label values, and keeps the values set to
the data row values.

Appends the new cleaned dictionary we created to our new array. This is inden‐
ted to ensure we have all the matches before going to the next row.

You can see from a simple print of the first record of our new values that we have
successfully made the data readable:

In [8]: new_rows[0]
Out[8]: {
 'AIDS virus from mother to child during delivery': 'Yes',
 'AIDS virus from mother to child during pregnancy': 'DK',
 'AIDS virus from mother to child through breastfeeding': 'DK',
 'Age': '25-29',
 'Age at first marriage/union': '29',...

One easy way to determine whether you have the proper indenta‐
tion for your function is to look at other lines with the same inden‐
tation. Always ask yourself: What other code logically goes with
this step? When should I move on to the next step in the process?

154 | Chapter 7: Data Cleanup: Investigation, Matching, and Formatting

www.it-ebooks.info

http://www.it-ebooks.info/

There isn’t always only one good solution to data cleanup problems, so let’s see if we
can solve our unreadable header problem another way using a different technique.

Zipping questions and answers

Another way to fix the label problem is to use Python’s zip method:

from csv import reader

data_rdr = reader(open('data/unicef/mn.csv', 'rb'))
header_rdr = reader(open('data/unicef/mn_headers.csv', 'rb'))

data_rows = [d for d in data_rdr]
header_rows = [h for h in header_rdr]

print len(data_rows[0])
print len(header_rows)

This time, instead of using DictReader, we use the simple reader class. The sim‐
ple reader creates a list for each row, rather than a dictionary. Because we want
to use zip, we need lists instead of dictionaries, so we can zip the list of header
values with the list of data values.

These lines create lists for our header and data readers and print them to see if
they are the same length.

Oops—our printed length output shows we have a mismatch in the length of our data
and headers! Our data shows only 159 rows while our header list shows we have 210
possible headers. This likely means MICS uses more questions for other countries or
provides more questions to choose from than we have in our Zimbabwe dataset.

We need to further investigate which headers are used in the dataset and which ones
we can leave behind. Let’s take a closer look to find which ones don’t align properly:

In [22]: data_rows[0]
Out[22]: ['',
 'HH1',
 'HH2',
 'LN',
 'MWM1',
 'MWM2',
 'MWM4',
 'MWM5',
 'MWM6D',
 'MWM6M',
 'MWM6Y',
...]

In [23]: header_rows[:2]
Out[23]: [

Data Cleanup Basics | 155

www.it-ebooks.info

http://www.it-ebooks.info/

 ['Name', 'Label', 'Question'],
 ['HH1', 'Cluster number', '']]

OK, so we can clearly see here we need to match the data_rows second row with the
first index of the header_rows. Once we identify which ones don’t match, we want to
toss them out of the header_rows so we can zip the data properly:

bad_rows = []

for h in header_rows:
 if h[0] not in data_rows[0]:
 bad_rows.append(h)

for h in bad_rows:
 header_rows.remove(h)

print len(header_rows)

Tests if the first element of the header row (the shorthand version of the header)
is in the first row of the data (all shortened headers).

Appends the rows identified as having mismatched headers to our new list,
bad_rows. We use this in the next step to identify rows to remove.

Uses the list’s remove method to remove a particular row of data from a list. This
method is often useful in situations where you can identify one specific row (or
set of rows) you want to remove from a list.

Aha! So now we can see we are nearly matching. We have 159 values in our data rows
and 150 values in our header list. Now let’s see if we can figure out why we don’t have
those nine matching headers in our header list:

all_short_headers = [h[0] for h in header_rows]

for header in data_rows[0]:
 if header not in all_short_headers:
 print 'mismatch!', header

Uses Python list comprehension to make a list of all the short headers by collect‐
ing only the first element of each header row.

Iterates over the headers in our dataset to see which ones don’t align with our
cleaned header list.

Singles out the headers that don’t match from our abbreviated list.

156 | Chapter 7: Data Cleanup: Investigation, Matching, and Formatting

www.it-ebooks.info

http://www.it-ebooks.info/

Uses print to display the mismatches. If you need a quick way to print two
strings on the same line, you can simply use a , in between them to concatenate
the strings with a space.

When you run this code, your output should look something like:

mismatch!
mismatch! MDV1F
mismatch! MTA8E
mismatch! mwelevel
mismatch! mnweight
mismatch! wscoreu
mismatch! windex5u
mismatch! wscorer
mismatch! windex5r

From the output and our current knowledge of the data, we can see that only a few of
the mismatched headers (those with capitals) are ones we might want to fix. The low‐
ercase titles are used for UNICEF internal methodology and don’t line up with ques‐
tions we have for our own investigation.

Because the MDV1F and MTA8E variables were not found with the web scraper we built
to collect headers from the World Bank site, we need to investigate what they mean
using our SPSS viewer. (The other option is to drop these rows and move on.)

When you are dealing with raw data, sometimes you’ll find that
getting it into a usable form means dropping data you don’t need or
data that’s difficult to clean. In the end, the determining factor
should not be sloth, but instead whether the data is essential to
your questions.

After opening the SPSS viewer, we can see MDV1F matches the label “If she commits
infidelity: wife beating justified” and matches up with another longer set of questions
regarding domestic abuse. We have other questions related to relationship abuse, so
it’s probably a good idea to include this. Investigating the MTA8E header shows it
matches up with a different series of questions, about which type of tobacco is
smoked by the person. We have added both to a new file, mn_headers_updated.csv.

Now we can retry the original code, this time using our updated headers file:

Let’s look at it all together and make a few changes so we can try zipping our headers
and data together. The following script requires a lot of memory, so if you have less
than 4GB RAM, we recommend running it in an IPython terminal or notebook to
help mitigate segmentation faults:

from csv import reader

data_rdr = reader(open('data/unicef/mn.csv', 'rb'))

Data Cleanup Basics | 157

www.it-ebooks.info

http://www.it-ebooks.info/

header_rdr = reader(open('data/unicef/mn_headers_updated.csv', 'rb'))

data_rows = [d for d in data_rdr]
header_rows = [h for h in header_rdr if h[0] in data_rows[0]]

print len(header_rows)

all_short_headers = [h[0] for h in header_rows]

skip_index = []

for header in data_rows[0]:
 if header not in all_short_headers:
 index = data_rows[0].index(header)
 skip_index.append(index)

new_data = []

for row in data_rows[1:]:
 new_row = []
 for i, d in enumerate(row):
 if i not in skip_index:
 new_row.append(d)
 new_data.append(new_row)

zipped_data = []

for drow in new_data:
 zipped_data.append(zip(header_rows, drow))

Uses list comprehension to quickly remove mismatched headers. As you can see,
we can also use an if statement inside a list comprehension. Here, the code
makes a list of rows from the header rows list, as long as the first header row ele‐
ment (abbreviated header) is in the headers from the data rows.

Creates a list to hold the indexes of data rows whose data we aren’t interested in
keeping.

Utilizes the Python list’s index method to return the indexes we should skip
because the headers aren’t in the abbreviated list. The next line will save the
indexes of the data rows that don’t match our headers, so we can skip collecting
that data.

Slices the list holding the survey data to include only data rows (all rows except
the first row) and then iterates through them.

Uses the enumerate function to isolate the indexes of the data rows to skip. This
function takes an iterable object (here, the data row list) and returns the numeric

158 | Chapter 7: Data Cleanup: Investigation, Matching, and Formatting

www.it-ebooks.info

http://www.it-ebooks.info/

index and value for each item. It assigns the first value (index) to i and assigns
the data value to d.

Tests to make sure the index is not in the list we want to skip.

After going through each item (or “column”) in the data row, adds the new entry
to the new_data list.

Zips each row (now exactly matched with header and data) and adds it to a new
array, zipped_data.

We can now print out a row of our new dataset and see if we have what we expected:

In [40]: zipped_data[0]
Out[40]: [(['HH1', 'Cluster number', ''], '1'),
(['HH2', 'Household number', ''], '17'),
(['LN', 'Line number', ''], '1'),
(['MWM1', 'Cluster number', ''], '1'),
(['MWM2', 'Household number', ''], '17'),
(['MWM4', "Man's line number", ''], '1'),
(['MWM5', 'Interviewer number', ''], '14'),
(['MWM6D', 'Day of interview', ''], '7'),
(['MWM6M', 'Month of interview', ''], '4'),
(['MWM6Y', 'Year of interview', ''], '2014'),
(['MWM7', "Result of man's interview", ''], 'Completed'),
(['MWM8', 'Field editor', ''], '2'),
(['MWM9', 'Data entry clerk', ''], '20'),
(['MWM10H', 'Start of interview - Hour', ''], '17'),
....

We have all of the questions and answers together in tuples, and every row has all of
the matching data with headers. To be certain we have everything correct, let’s take a
look at the end of that row:

 (['TN11', 'Persons slept under mosquito net last night',
 'Did anyone sleep under this mosquito net last night?'], 'NA'),
 (['TN12_1', 'Person 1 who slept under net',
 'Who slept under this mosquito net last night?'], 'Currently married/in union'),
 (['TN12_2', 'Person 2 who slept under net',
 'Who slept under this mosquito net last night?'], '0'),

This looks strange. It seems like we might have some mismatches. Let’s do a reality
check and use our newly learned zip method to see if our headers match up properly:

data_headers = []

for i, header in enumerate(data_rows[0]):
 if i not in skip_index:
 data_headers.append(header)

header_match = zip(data_headers, all_short_headers)

Data Cleanup Basics | 159

www.it-ebooks.info

http://www.it-ebooks.info/

print header_match

Iterates over the headers in the data list.

By using if...not in..., returns True only for indexes not included in
skip_index.

Zips the new lists of headers together so we can visually check for the mismatch.

Aha! Did you see the error?

....
 ('MHA26', 'MHA26'),
 ('MHA27', 'MHA27'),
 ('MMC1', 'MTA1'),
 ('MMC2', 'MTA2'),
....

Everything is matching until this point, when it appears our header file and data file
diverge in regards to question order. Because the zip method expects everything to
appear in the same order, we must reorder our headers to match the dataset before we
can use it. Here’s our new try at matching our data:

from csv import reader

data_rdr = reader(open('data/unicef/mn.csv', 'rb'))
header_rdr = reader(open('data/unicef/mn_headers_updated.csv', 'rb'))

data_rows = [d for d in data_rdr]
header_rows = [h for h in header_rdr if h[0] in data_rows[0]]

all_short_headers = [h[0] for h in header_rows]

skip_index = []
final_header_rows = []

for header in data_rows[0]:
 if header not in all_short_headers:
 index = data_rows[0].index(header)
 skip_index.append(index)
 else:
 for head in header_rows:
 if head[0] == header:
 final_header_rows.append(head)
 break

new_data = []

for row in data_rows[1:]:
 new_row = []

160 | Chapter 7: Data Cleanup: Investigation, Matching, and Formatting

www.it-ebooks.info

http://www.it-ebooks.info/

 for i, d in enumerate(row):
 if i not in skip_index:
 new_row.append(d)
 new_data.append(new_row)

zipped_data = []

for drow in new_data:
 zipped_data.append(zip(final_header_rows, drow))

Makes a new list to contain the final properly ordered header rows.

Uses an else statement to include only columns where we have a match.

Iterates over our header_rows until there’s a match.

Tests the short header to see if the question lines up. We use == to test for a
match.

Uses break to exit the for head in header_rows loop once a match is found.
This makes it faster and doesn’t hurt the outcome.

Zips our new final_header_rows list with the header rows in the proper order.

After running our new code, we want to take a look at the end of our first entry:

(['TN12_3', 'Person 3 who slept under net',
'Who slept under this mosquito net last night?'], 'NA'),
(['TN12_4', 'Person 4 who slept under net',
'Who slept under this mosquito net last night?'], 'NA'),
(['HH6', 'Area', ''], 'Urban'),
(['HH7', 'Region', ''], 'Bulawayo'),
(['MWDOI', 'Date of interview women (CMC)', ''], '1372'),
(['MWDOB', 'Date of birth of woman (CMC)', ''], '1013'),
(['MWAGE', 'Age', ''], '25-29'),

This looks like a good match. We can likely improve the clarity of our code; however,
we have found a good way to preserve most of the data and zip our data together, and
it works relatively fast.

You will always need to evaluate how complete you need the data to
be and what level of effort fits your project’s cleanup needs. If you
are only using one part of the data, it’s likely you don’t need to
retain it all. If the dataset is your primary research source, it’s worth
more time and effort to keep it complete.

In this section, we’ve learned some new tools and methods to identify what’s wrong or
needs cleaning and implemented fixes by combining the Python we know with our

Data Cleanup Basics | 161

www.it-ebooks.info

http://www.it-ebooks.info/

own problem-solving techniques. Our first data cleanup effort (replacing the header
text) preserved fewer columns and didn’t show us we had some missing headers.
However, as long as the resulting dataset had the columns we needed, this would be
sufficient, and it was faster and required less code.

Think about these types of issues as you clean your data. Is it essential that you have
all the data? If so, how many hours is it worth? Is there an easy way to preserve every‐
thing you need and still clean it up properly? Is there a repeatable way? These ques‐
tions will help guide you in cleaning up your datasets.

Now that we have a good list of data to work with, we’ll move on to other types of
cleanup.

Formatting Data
One of the most common forms of data cleanup is getting your unreadable or hard-
to-read data and data types to fit a proper readable format. Especially if you need to
create reports with the data or downloadable files, you’ll want to make sure it goes
from being machine readable to human readable. And if your data needs to be used
alongside APIs, you might need specially formatted data types.

Python gives us a ton of ways to format strings and numbers. We used %r, which
shows the Python representation of the object in a string or Unicode, in Chapter 5 to
debug and show our results. Python also has string formatters %s and %d, which rep‐
resent strings and digits, respectively. We often use these in conjuction with the print
command.

A more advanced way to turn objects into strings or Python representations is to uti‐
lize the format method. As clarified in the Python documentation, this method lets
us define a string and pass the data as arguments or keyword arguments into the
string. Let’s take a closer look at format:

for x in zipped_data[0]:
 print 'Question: {}\nAnswer: {}'.format(
 x[0], x[1])

format uses {} to represent where to put the data and the \n newline character to
create breaks between the lines.

Here, we pass the first and second values of the question and answer tuple.

You should see something like this:

Question: ['MMT9', 'Ever used Internet', 'Have you ever used the Internet?']
Answer: Yes
Question: ['MMT10', 'Internet usage in the last 12 months',
'In the last 12 months, have you used the Internet?']
Answer: Yes

162 | Chapter 7: Data Cleanup: Investigation, Matching, and Formatting

www.it-ebooks.info

https://docs.python.org/2/library/stdtypes.html#str.format
http://www.it-ebooks.info/

This is fairly difficult to read. Let’s try cleaning it up a bit more. From our output, we
can see the question tuple has an abbreviation as the 0-index value and a description
of the question as the 1-index value. We’d like to just use the second part of the array,
which gives us a nice title. Let’s try again:

for x in zipped_data[0]:
 print 'Question: {[1]}\nAnswer: {}'.format(
 x[0], x[1])

This time we use the ability to single out the index in the format syntax 1, making
the output more readable.

Let’s see what output we get:

Question: Frequency of reading newspaper or magazine
Answer: Almost every day
Question: Frequency of listening to the radio
Answer: At least once a week
Question: Frequency of watching TV
Answer: Less than once a week

Now our output is readable. Hooray! Let’s take a look at a few of the other options
available with the format method. Our current dataset doesn’t have a large amount of
numeric data, so we’ll just use some example numbers to show more formatting
options for different numerical types:

example_dict = {
 'float_number': 1324.321325493,
 'very_large_integer': 43890923148390284,
 'percentage': .324,
}

string_to_print = "float: {float_number:.4f}\n"
string_to_print += "integer: {very_large_integer:,}\n"
string_to_print += "percentage: {percentage:.2%}"

print string_to_print.format(**example_dict)

Uses a dictionary and accesses the values of the dictionary using the keys. We use
a : to separate the key name and the pattern. Passing .4f tells Python to make
the number a float (f) and show the first four decimal digits (.4).

Uses the same format (with the key name and colon) and inserts commas (,) to
separate thousands.

Uses the same format (with the key name and colon) but inserts a percentage (%)
and shows the first two significant decimal digits (.2).

Data Cleanup Basics | 163

www.it-ebooks.info

http://www.it-ebooks.info/

Passes our data dictionary into the format method called on the long string and
uses ** to unpack the dictionary. Unpacking a Python dictionary will send the
key/value pairs in expanded form; here, the unpacked keys and values are sent to
the format method.

For more advanced formatting, such as removing unnecessary
spaces, aligning the data by length, and performing math equations
in the format method, read the Python formatting documentation
and examples.

Aside from strings and numbers, Python allows us to easily format dates. Python’s
datetime module has methods to format dates you already have (or generate) in
Python as well as to read in any date formats and create Python date, datetime, and
time objects.

The most commonly used methods to format dates in Python or
make strings into dates are strformat and strpformat, and the
formatting might be recognizable if you have used date formatting
in other languages. For more information, read the “strftime and
strptime Behavior” documentation.

The datetime module’s strptime method allows you to use strings or numbers to
create a Python datetime object. This is great if you want to save the date and time to
a database or you need to modify the time zone or add an hour. By turning it into a
Python object, you can harness the power of Python’s date capabilities and easily turn
it back into a human- or machine-readable string later.

Let’s take a look at our data holding interview start and end times from our
zipped_data list. To refresh our memories, let’s print some of our first entry to make
sure we know what data entries we need to use:

for x in enumerate(zipped_data[0][:20]):
 print x

.....
(7, (['MWM6D', 'Day of interview', ''], '7'))
(8, (['MWM6M', 'Month of interview', ''], '4'))
(9, (['MWM6Y', 'Year of interview', ''], '2014'))
(10, (['MWM7', "Result of man's interview", ''], 'Completed'))
(11, (['MWM8', 'Field editor', ''], '2'))
(12, (['MWM9', 'Data entry clerk', ''], '20'))
(13, (['MWM10H', 'Start of interview - Hour', ''], '17'))
(14, (['MWM10M', 'Start of interview - Minutes', ''], '59'))
(15, (['MWM11H', 'End of interview - Hour', ''], '18'))
(16, (['MWM11M', 'End of interview - Minutes', ''], '7'))

164 | Chapter 7: Data Cleanup: Investigation, Matching, and Formatting

www.it-ebooks.info

http://bit.ly/format_string_syntax
http://bit.ly/format_string_syntax
http://bit.ly/strftime_strptime
http://bit.ly/strftime_strptime
http://www.it-ebooks.info/

Utilizes Python’s enumerate function to see which lines from the data we will
need to evaluate.

We now have all the data we need to figure out exactly when the interview started and
ended. We could use data like this to determine things whether interviews in the eve‐
ning or morning were more likely to be completed, and whether the length of the
interview affected the number of responses. We can also determine which was the
first interview and the last interview and calculate average duration.

Let’s try importing the data into Python datetime objects using strptime:

from datetime import datetime

start_string = '{}/{}/{} {}:{}'.format(
 zipped_data[0][8][1], zipped_data[0][7][1], zipped_data[0][9][1],
 zipped_data[0][13][1], zipped_data[0][14][1])

print start_string

start_time = datetime.strptime(start_string, '%m/%d/%Y %H:%M')

print start_time

Creates a base string to parse all of the data from the many entries. This code uses
American-style date strings formatted with the month, day, year, and then hour
and minute.

Accesses the following format: zipped_data[first data entry][data number
row (derived from enumerate)][just the data itself]. Using just the first
entry to test, the row at index 8 is the month, the row at index 7 is the day, and
the row at index 9 is the year. The second element ([1]) of each tuple is the data.

Calls the strptime method with a date string and a pattern string using the syn‐
tax defined in the Python documentation. %m/%d/%Y is the month, day, year, and
%H:%M is the hour and minute. The method returns a Python datetime object.

If you are using IPython to run code, you need not use print to
show every line you are interested in viewing. It’s common practice
to instead just type the variable name and view the output in the
interactive terminal. You can even use Tab to autocomplete.

With our code, we created a common date string and parsed it using datetime’s
strptime method. Because each element of the time data is a separate item in our
dataset, we could also natively create Python datetime objects without using
strptime. Let’s take a look:

Data Cleanup Basics | 165

www.it-ebooks.info

http://bit.ly/strftime_strptime
http://www.it-ebooks.info/

from datetime import datetime

end_time = datetime(
 int(zipped_data[0][9][1]), int(zipped_data[0][8][1]),
 int(zipped_data[0][7][1]), int(zipped_data[0][15][1]),
 int(zipped_data[0][16][1]))

print end_time

Uses the datetime class in Python’s datetime module to pass integers directly to
form a date object. We pass them as arguments, using commas to separate the
elements.

Because datetime expects integers, this code converts all of our data to integers.
The order datetime expects data in is year, month, day, hour, minute, so we must
order the data accordingly.

As you can see, with fewer lines of code (in this case) we were able to get the end time
of the interview in a Python datetime object. We now have two datetime objects, so
let’s do some math with them!

duration = end_time - start_time

print duration

print duration.days

print duration.total_seconds()

minutes = duration.total_seconds() / 60.0

print minutes

Calculates duration by subtracting the start time from the end time.

Prints a new Python date type. This is a timedelta object. As described in the
datetime documentation, timedeltas show differences between two time objects
and are used to change or alter time objects.

Uses timedelta’s built-in days attribute to see how many days the delta spans.

Calls timedelta’s total_seconds method to calculate the time difference in sec‐
onds. This also counts microseconds.

Calculates the minutes, as timedelta has no minutes attribute.

In running our code, we saw the first interview lasted 8 minutes—but do we know if
that is on average how long the interviews last? This is something we can figure out

166 | Chapter 7: Data Cleanup: Investigation, Matching, and Formatting

www.it-ebooks.info

http://bit.ly/python_datetime
http://bit.ly/python_datetime
http://www.it-ebooks.info/

by parsing through the entire dataset using our new datetime skills. We’ve done some
simple datetime math and figured out how to create Python datetime objects from
our dataset. Now let’s see if we can convert these new datetime objects back into for‐
matted strings for use in a human-readable report:

print end_time.strftime('%m/%d/%Y %H:%M:%S')

print start_time.ctime()

print start_time.strftime('%Y-%m-%dT%H:%M:%S')

strftime requires only one argument, the date pattern you would like to show.
This line outputs the standard American time format.

Python’s datetime objects have a ctime method that outputs the datetime object
according to C’s ctime standard.

Python’s datetime objects can output the string in any way you might wish. This
code uses a format often used by PHP. If you need to interact with APIs requiring
a special string format, datetime can help.

Python’s datetime objects are incredibly useful and very easy to manipulate, import,
and export (via formatting). Depending on your dataset, you can use these new tech‐
niques to import and convert all of your string or Excel data into datetime objects,
run statistics or averages on them, and then convert them back into strings for your
reporting.

We’ve learned numerous formatting tips and tricks. Now let’s begin some more inten‐
sive cleanup. We’ll review how to easily find bad seeds in your data and what to do
about them.

Finding Outliers and Bad Data
Identifying outliers and bad data in your dataset is probably one of the most difficult
parts of data cleanup, and it takes time to get right. Even if you have a deep under‐
standing of statistics and how outliers might affect your data, it’s always a topic to
explore cautiously.

You want to clean your data, not manipulate or change it, so spend
some extra time determining how to handle outliers or bad records
when considering their removal. You should be very explicit in
your final conclusions if you removed outliers to help normalize
your data.

Data Cleanup Basics | 167

www.it-ebooks.info

http://www.it-ebooks.info/

We’ll review more ways to find outliers in Chapter 9, but let’s chat about some easy
ways to check if you have bad data in your dataset.

Your first clues about data validity come from your source. As we talked about in
Chapter 6, you want to ensure your source is properly vetted and you can trust the
data. You’ll want to have asked the source how the data was collected and if the data
has already been cleaned or processed.

For the samples we are using here, we know that UNICEF surveys follow a standard
format of questions. We know they perform these censuses at regular intervals. We
also know they have a standard protocol for training their workers on how to prop‐
erly conduct the interviews. These are all good signs that the data is a proper sample
and not a pre-selected sample. If, instead, we found out that UNICEF only inter‐
viewed families in large cities and ignored the rural population, this might result in a
selection bias or sampling error. Depending on your sources, you should determine
what biases your dataset might have.

You can’t always get perfect data. However, you should be aware of
what sampling biases your data might have and ensure you don’t
make sweeping claims based on datasets that might not represent
the entire story or population.

Moving on from source and data bias, you can find potential errors in your data by
asking, “Do any of these data points not fit?” One easy way to tell if you have
improper data values is to see if there are errors in the data values you have. For
example, you can look through a dataset and see if an important value is missing. You
can also look through a dataset and determine if the types (e.g., integer, date, string)
don’t properly match up. Let’s take a look at some of these problems in our dataset by
attempting to locate some missing data:

for answer in zipped_data[0]:
 if not answer[1]:
 print answer

Iterates over all of the rows of our first entry.

Tests whether a value “exists.” We know the values are the second entries in the
tuples, and we know we can use an if not statement to test this.

168 | Chapter 7: Data Cleanup: Investigation, Matching, and Formatting

www.it-ebooks.info

http://www.it-ebooks.info/

if not Statements
Python can test whether a value exists using a simple if not statement. Try entering
if not None: print True. What happened? Try using an empty string or a zero fol‐
lowing if not. What happened?

Because we know our data is strings, and unlike other datasets we have looked at,
UNICEF just uses a blank string to represent missing data (instead of --, etc.), we
know we can test for a value by seeing if the string exists.

Depending on your data types and dataset, you might want to test if x is None, or
if len(x) < 1. You’ll want to balance readability and ease with the ability of your
code to be specific and explicit. Always follow the Zen of Python.

From the output of our code, we can see we don’t have any obvious missing data in
our first row. How can we test our entire dataset?

for row in zipped_data:
 for answer in row:
 if answer[1] is None:
 print answer

This time, we loop over every row in our dataset instead of just the first entry.

We remove the [0] from our previous example, as we have each row as its own
loop.

For example’s sake, here we test if we see any None types. This will tell us if there
are null data points, but won’t tell us if we have zeros or empty strings.

We can see we don’t have any obvious missing data in our entire dataset, but let’s take
a cursory look at some of our data to see if there are more difficult-to-discern bits of
missing data. From our earlier prints, you might remember the usage of NA repre‐
senting Not Applicable.

Although this is not missing data, we might want to know exactly
how many NA answers we have, or if certain questions have an
overrepresentation of these answers. If the sample is too small—i.e.,
if there is a preponderance of NA responses—we probably want to
avoid making any larger conclusions based on the available data. If
the majority of responses are NA, though, we might find that inter‐
esting (why was that question not applicable to the majority of the
group?).

Data Cleanup Basics | 169

www.it-ebooks.info

http://www.it-ebooks.info/

Let’s see if there is a preponderance of NA answers for any specific questions:

na_count = {}

for row in zipped_data:
 for resp in row:
 question = resp[0][1]
 answer = resp[1]
 if answer == 'NA':
 if question in na_count.keys():
 na_count[question] += 1
 else:
 na_count[question] = 1

print na_count

Defines a dictionary to keep track of questions with NA responses. Keeping the
data in a hashed object (like a dictionary) allows Python to quickly and easily
query the members. The questions will be the keys and the values will hold the
count:

Stores the second entry from the first part of the tuple (the description of the
question) in question. The first entry ([0]) is the shorthand title and the last
entry ([2]) is the question the surveyors asked, which is not always available.

Uses Python’s equivalency test to find NA responses. If we cared about more than
one way to write NA, we might use something like if answer in ["NA", "na",
"n/a"]: to accept a variety of written responses with the same meaning.

Tests if this question is already in the dictionary by testing if it is in the keys of
the dictionary.

If the question is already in the keys, this code adds 1 to the value using Python’s
+= method.

If it is not a member of the dictionary yet, this code adds it to the dictionary and
sets its count value to 1.

Wow! There are quite a few NA responses in our dataset. We have approximately
9,000 rows of data, and some of these questions have more than 8,000 NA responses.
It’s possible these questions are not relevant to the demographic or age group sur‐
veyed or don’t resonate with the particular nation and culture. Regardless, there is lit‐
tle sense in using the NA questions to draw any sort of larger conclusions about the
population surveys.

Finding things like the NA values in your dataset can be very useful in determining
whether that dataset is appropriate for your research needs. If you find that the ques‐

170 | Chapter 7: Data Cleanup: Investigation, Matching, and Formatting

www.it-ebooks.info

http://www.it-ebooks.info/

tions you need answered have an overwhelming amount of NA-style responses, you
might have to keep looking for another source of data or rethink your questions.

We’ve covered missing data; now let’s see if we can find any type outliers. A type out‐
lier might be present, for example, if a year entry holds a string like 'missing' or
'NA'. If we see just a few data types that don’t align, we might be dealing with outliers
or a few instances of bad data. If we see that a large portion of them don’t align, we
might want to rethink using that data or determine why they seem to match a “bad
data” pattern.

If we can easily account for the inconsistencies (e.g., because this answer only applies
to women and the survey sample is mixed-gender), then we can include the data. If
there is no clear explanation, and the question is significant and important to our
result, we will have to keep investigating our current dataset or begin to look for other
datasets that might explain the misalignment.

We’ll talk more about finding outliers in Chapter 9, but for now let’s take a quick look
at analyzing data types and see if we can spot any obvious inconsistencies in our cur‐
rent dataset. For example, we should verify that answers we always expect to be num‐
bers (like year of birth) are the right data type.

Let’s take a quick look at the distribution of types in our responses. We’ll use some of
the same code we used for counting NA responses but this time we’ll take a look at
data types:

datatypes = {}

start_dict = {'digit': 0, 'boolean': 0,
 'empty': 0, 'time_related': 0,
 'text': 0, 'unknown': 0
 }

for row in zipped_data:
 for resp in row:
 question = resp[0][1]
 answer = resp[1]
 key = 'unknown'
 if answer.isdigit():
 key = 'digit'
 elif answer in ['Yes', 'No', 'True', 'False']:
 key = 'boolean'
 elif answer.isspace():
 key = 'empty'
 elif answer.find('/') > 0 or answer.find(':') > 0:
 key = 'time_related'
 elif answer.isalpha():
 key = 'text'
 if question not in datatypes.keys():
 datatypes[question] = start_dict.copy()

Data Cleanup Basics | 171

www.it-ebooks.info

http://www.it-ebooks.info/

 datatypes[question][key] += 1

print datatypes

The first line initializes a dictionary, because it’s a fast, reliable way to store data
on a question-by-question level.

This sets up a start_dict to ensure the same data exists for each question in our
dataset. The dictionary will contain all of our possible guesses as to data type so
we can easily compare.

Here, we set a variable key with the default value unknown. If the key variable is
not updated in one of the following if or elif statements, it remains unknown.

Python’s string class has many methods to help determine type. Here, we use the
isdigit method: this line returns True if the string holds a digit.

To determine if the data relates to Boolean logic, here we test if the answer is in
the list of Boolean-based responses, including Yes/No and True/False. Although
we could create a more comprehensive test, this is a good starting point.

The Python string class’s isspace method returns True if the string contains only
spaces.

The string’s find method returns the index of the first match. If it finds no match
in the string, it returns -1. This code tests for both / and :, which are commonly
used in time strings. This is not a comprehensive check, but should give us an
initial idea.

The string’s isalpha method returns True if the string contains only alphabetic
characters.

As in the code for counting NA responses, here we test if the question is in the
keys of the datatypes dictionary.

If the question is not in the datatypes dictionary, this code adds it and saves a
copy of the start_dict as the value. The dictionary’s copy method creates a sep‐
arate dictionary object for each entry. If we assigned start_dict to each ques‐
tion, we would end up counting the lump sum in one dictionary, rather than
starting with a new dictionary for every question.

This adds 1 to the value of the key we found. So, for each question and response,
we have a “guess” about the type.

172 | Chapter 7: Data Cleanup: Investigation, Matching, and Formatting

www.it-ebooks.info

http://www.it-ebooks.info/

In our results, we can already see some variance! Some of the question and answer
sets have significant representation in one “type”, while others have a variety of type
guesses. We can use these as a starting point, as these are just rough guesses.

One way we can start to use this new information is to find questions with a vast
majority of digit-type responses and see what the values of the non-digit responses
are. We would likely expect those to be either NA or improperly inserted values. We
can move to normalize those values if they relate to questions we care about. One way
to do that is to substitute NA values or erroneous values with None or null values.
This can be useful if you are going to run statistical methods on the columns in
question.

As you continue to work with your dataset, you will find anomalies
in data types or NA responses. How best to handle these inconsis‐
tencies depends on your knowledge of the topic and dataset as well
as what questions you are trying to answer. If you are combining
datasets, you can sometimes throw out these outliers and bad data
patterns; however, be wary of overlooking minor trends.

Now that we’ve started recognizing outliers and outlier patterns in our data, let’s work
on eliminating bad data we may even have created ourselves—duplicates.

Finding Duplicates
If you are using more than one dataset with the same survey data or if you have used
raw data that may have duplicate entries, removing duplicate data will be an impor‐
tant step in ensuring your data can be accurately used. If you have a dataset with
unique identifiers, you can use those IDs to ensure you haven’t accidentally inserted
or acquired duplicate data. If you do not have an indexed dataset, you might need to
figure out a good way to identify each unique entry (such as creating an indexable
key).

Python has some great ways to identify uniques in the built-in library. Let’s introduce
some of the concepts here:

list_with_dupes = [1, 5, 6, 2, 5, 6, 8, 3, 8, 3, 3, 7, 9]

set_without_dupes = set(list_with_dupes)

print set_without_dupes

Your output should look something like this:

{1, 2, 3, 5, 6, 7, 8, 9}

Data Cleanup Basics | 173

www.it-ebooks.info

http://www.it-ebooks.info/

What’s happening here? Set and frozenset are Python built-in types which allow us to
take an iterable object (like a list, or a string, or a tuple) and create a set containing
only the unique values.

In order to use set and frozenset, the values need to be hashable.
With hashable types, we can apply a hash method and the resulting
value will always be the same. This means, for example, that we can
trust a 3 is the same as every other 3 we see in code.

Most Python objects are hashable—only lists and dictionaries are not. We can create
sets using set with any collection of hashable types (integers, floats, decimals, strings,
tuples, etc.). The other neat thing about sets and frozensets is they have some fast
comparison properties. Let’s take a look at some examples:

first_set = set([1, 5, 6, 2, 6, 3, 6, 7, 3, 7, 9, 10, 321, 54, 654, 432])

second_set = set([4, 6, 7, 432, 6, 7, 4, 9, 0])

print first_set.intersection(second_set)

print first_set.union(second_set)

print first_set.difference(second_set)

print second_set - first_set

print 6 in second_set

print 0 in first_set

The intersection method of a set returns the intersection between two sets (i.e.,
the elements held in commom). A built-in Venn diagram!

The union method of a set combines the values of the first set and the second set.

The difference method shows the difference between the first set and the sec‐
ond set. Order of operations matters, as you’ll see in the next line.

Subtracting one set from another shows the difference between them. Changing
the order of the difference sets changes the order of the result (just like in math).

in tests set membership (with very fast performance).

Your output should look like this:

set([432, 9, 6, 7])
set([0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 321, 432, 654, 54])

174 | Chapter 7: Data Cleanup: Investigation, Matching, and Formatting

www.it-ebooks.info

http://bit.ly/python_set
http://www.it-ebooks.info/

set([1, 2, 3, 5, 321, 10, 654, 54])
set([0, 4])
True
False

Sets have quite a lot of useful features for defining unique datasets and comparing
sets. There are many times in data wrangling where we need to know the minimum
and maximum of a series of values, or we need a union of unique keys. Sets can help
us with those tasks.

Aside from sets, Python has several other libraries with easy ways to test uniqueness.
One library you can use for uniqueness is numpy, a powerful mathmatics library for
Python with scientific and statistical methods and classes. numpy has superior array,
numerical, and mathematical capabilities compared to the core Python libraries. It
also has a great method called unique used with a numpy array. You can install numpy
like so:

pip install numpy

Let’s take a look at how numpy’s unique works:

import numpy as np

list_with_dupes = [1, 5, 6, 2, 5, 6, 8, 3, 8, 3, 3, 7, 9]

print np.unique(list_with_dupes, return_index=True)

array_with_dupes = np.array([[1, 5, 7, 3, 9, 11, 23], [2, 4, 6, 8, 2, 8, 4]])

print np.unique(array_with_dupes)

Numpy’s unique method keeps track of the indexes. Passing return_index=True
results in a tuple of arrays: the first is an array of the unique values, and the sec‐
ond is a flattened array of the indexes—only the first occurrence of every number
will be present.

To show more numpy, this line creates a numpy matrix. This is an array of arrays
(equally sized).

unique creates a unique set out of a matrix.

Your output will look like this:

(array([1, 2, 3, 5, 6, 7, 8, 9]), array([0, 3, 7, 1, 2, 11, 6, 12]))
[1 2 3 4 5 6 7 8 9 11 23]

If you don’t have unique keys, you can write a function to create a unique set. It can
be as simple as using list comprehension. Let’s try one using Python’s sets for our

Data Cleanup Basics | 175

www.it-ebooks.info

http://www.it-ebooks.info/

dataset. First, we determine a unique number by taking a look at which data in our
dataset is unique:

for x in enumerate(zipped_data[0]):
 print x

.....

(0, (['HH1', 'Cluster number', ''], '1'))
(1, (['HH2', 'Household number', ''], '17'))
(2, (['LN', 'Line number', ''], '1'))
(3, (['MWM1', 'Cluster number', ''], '1'))
(4, (['MWM2', 'Household number', ''], '17'))
(5, (['MWM4', "Man's line number", ''], '1'))

We see the first five elements of each row have some presumably unique identifiers.
Assuming we are understanding the data properly, the cluster, household, and man’s
line numbers should create a unique combination. It’s possible the line numbers are
unique as well. Let’s see if we are correct:

set_of_lines = set([x[2][1] for x in zipped_data])

uniques = [x for x in zipped_data if not set_of_lines.remove(x[2][1])]

print set_of_lines

First, we make a set containing the line numbers of the survey. The line number
is the third element in each response and the value is the second element of that
row (x[2][1]). We use list comprehension to speed up our code.

set_of_lines now holds the unique keys. We can use the set object’s remove
method to see if we have more than one of each of those keys in the dataset. If the
line number is unique, it will remove each key only once. If we have duplicates,
remove will throw a KeyError to let us know that key is no longer in our set.

Hmm. We did see an error when we ran the code, so we were wrong in our assump‐
tion the line numbers were unique. If we take a closer look at the set we made, it looks
like line numbers go from 1–16 and then repeat.

You’ll often have to work with messy datasets, or datasets similar to
this one with no obvious unique key. Our suggestion in times like
these is to determine a good way to find a unique key and then use
that as a comparison.

We have numerous options for creating a unique key. We could use the start time of
the interview. However, we aren’t sure whether UNICEF deploys many survey teams
at once; and if so, we could remove items marked as duplicates which are actually not

176 | Chapter 7: Data Cleanup: Investigation, Matching, and Formatting

www.it-ebooks.info

http://www.it-ebooks.info/

duplicates. We could use the birth date of the man combined with the time of the
interview, as that’s unlikely to have matches, but if we had any missing fields that
could be problematic.

One nice solution is to see if a combination of the cluster, household, and line num‐
bers creates a unique key. If so, then we could use this method across datasets—even
ones without a start and end time. Let’s give it a try!

set_of_keys = set([
 '%s-%s-%s' % (x[0][1], x[1][1], x[2][1]) for x in zipped_data])

uniques = [x for x in zipped_data if not set_of_keys.remove(
 '%s-%s-%s' % (x[0][1], x[1][1], x[2][1]))]

print len(set_of_keys)

Makes a string out of the three parts we think are unique: the cluster number, the
household number, and the line number. We are separating each with a - so we
can differentiate between the three values.

Re-creates the unique key we used, and uses the remove feature. This will remove
those entries one by one, and the uniques list will hold every unique row. If there
is a duplicate entry, our code will again throw an error.

Evaluates the length our list of unique keys. This can show us how many unique
entries we have in our dataset.

Super! This time we have no errors. We can see by the length of our list that each
row is a unique entry. This is what we would expect from a processed dataset, as
UNICEF does some data cleanup before publishing and ensures there are no dupli‐
cates. If we were combining this data with other UNICEF data, we might add M in
our key because it’s the men’s group survey. We could then cross reference households
that carry the same numbers.

Depending on your data, the unique key might not be obvious. Birth dates and
addresses might be a good combination. The chances there are two 24-year-old
women at the same address with the exact same date of birth are slim, although not
out of the question if they are twins who live together!

Moving on from duplicates, we’ll now take a look at fuzzy matching, a great way to
find duplicates in particularly noisy datasets.

Fuzzy Matching
If you are using more than one dataset or unclean, unstandardized data, you might
use fuzzy matching to find and combine duplicates. Fuzzy matching allows you to
determine if two items (usually strings) are “the same.” While not as in-depth as using

Data Cleanup Basics | 177

www.it-ebooks.info

http://www.it-ebooks.info/

natural language processing or machine learning to determine a match with big data‐
sets on language, fuzzy matching can help us relate “My dog & I” and “me and my
dog” as having similar meaning.

There are many ways to go about fuzzy matching. One Python library, developed by
SeatGeek, uses some pretty cool methods internally to match tickets being sold online
for different events. You can install it by using:

pip install fuzzywuzzy

So let’s say you’re dealing with some unclean data. Maybe it was input sloppily or is
user-entered and contains misspellings and small syntactic errors or deviations. How
might you account for that?

from fuzzywuzzy import fuzz

my_records = [{'favorite_book': 'Grapes of Wrath',
 'favorite_movie': 'Free Willie',
 'favorite_show': 'Two Broke Girls',
 },
 {'favorite_book': 'The Grapes of Wrath',
 'favorite_movie': 'Free Willy',
 'favorite_show': '2 Broke Girls',
 }]

print fuzz.ratio(my_records[0].get('favorite_book'),
 my_records[1].get('favorite_book'))

print fuzz.ratio(my_records[0].get('favorite_movie'),
 my_records[1].get('favorite_movie'))

print fuzz.ratio(my_records[0].get('favorite_show'),
 my_records[1].get('favorite_show'))

Here we use the fuzz module’s ratio function, which expects two strings to com‐
pare. It returns the similarity of the sequencing of the strings (a value between 1
and 100).

We can see from our own understanding of popular culture and English that these
two entries have the same favorites; however, they have spelled them differently.
FuzzyWuzzy helps us counter these unintentional mistakes. We can see our matches
using ratio scored pretty high. This gives us some level of confidence the strings are
similar.

Let’s try another FuzzyWuzzy method and see our results. We’ll use the same data for
the sake of simplicity and comparison:

print fuzz.partial_ratio(my_records[0].get('favorite_book'),
 my_records[1].get('favorite_book'))

178 | Chapter 7: Data Cleanup: Investigation, Matching, and Formatting

www.it-ebooks.info

http://bit.ly/fuzzy_string_matching
http://www.it-ebooks.info/

print fuzz.partial_ratio(my_records[0].get('favorite_movie'),
 my_records[1].get('favorite_movie'))

print fuzz.partial_ratio(my_records[0].get('favorite_show'),
 my_records[1].get('favorite_show'))

Here we call the fuzz module’s partial_ratio function, which expects two
strings to compare. It returns the similarity of the sequencing of the closest
matching substrings (a value between 1 and 100).

Wow, we can see we are getting much higher numbers! The partial_ratio function
allows us to compare substrings, which means we don’t need to worry if someone has
forgotten a word (like in our book example) or used different punctuation. This
means a closer match for all of our strings.

If your data has some simple inconsistencies, these are some great
functions to help find the mismatches. But if your data has some
large differences in meaning with a few characters’ difference, you
might want to test similarity and difference. For example, “does”
and “doesn’t” are quite different in meaning but not very different
in spelling. In the first ratio example, these two strings wouldn’t
score highly, but in the substring, we would have a match. Knowl‐
edge of your data and the complexities therein is a must!

FuzzyWuzzy also has some other cool options. Let’s explore some of them, as they
might pertain to your data cleanup needs:

from fuzzywuzzy import fuzz

my_records = [{'favorite_food': 'cheeseburgers with bacon',
 'favorite_drink': 'wine, beer, and tequila',
 'favorite_dessert': 'cheese or cake',
 },
 {'favorite_food': 'burgers with cheese and bacon',
 'favorite_drink': 'beer, wine, and tequila',
 'favorite_dessert': 'cheese cake',
 }]

print fuzz.token_sort_ratio(my_records[0].get('favorite_food'),
 my_records[1].get('favorite_food'))

print fuzz.token_sort_ratio(my_records[0].get('favorite_drink'),
 my_records[1].get('favorite_drink'))

print fuzz.token_sort_ratio(my_records[0].get('favorite_dessert'),
 my_records[1].get('favorite_dessert'))

Data Cleanup Basics | 179

www.it-ebooks.info

http://www.it-ebooks.info/

Here we call the fuzz module’s token_sort_ratio function, which allows us to
match strings despite word order. This is great for free-form survey data, where
“I like dogs and cats” and “I like cats and dogs” mean the same thing. Each string
is first sorted and then compared, so if they contain the same words in a different
order, they will match.

From our output, we can see using tokens (here, words) gives us a pretty good chance
at matching word order differences. Here we see the favorite drink options are the
same, just in different orders. We can use this when the order of tokens doesn’t
change the meaning. For SeatGeek, “Pittsburgh Steelers vs. New England Patriots” is
the same as “New England Patriots vs. Pittsburgh Steelers” (with the exception of
home field advantage).

Let’s take a look at another token-oriented function from FuzzyWuzzy, using our
same data:

print fuzz.token_set_ratio(my_records[0].get('favorite_food'),
 my_records[1].get('favorite_food'))

print fuzz.token_set_ratio(my_records[0].get('favorite_drink'),
 my_records[1].get('favorite_drink'))

print fuzz.token_set_ratio(my_records[0].get('favorite_dessert'),
 my_records[1].get('favorite_dessert'))

Here we use the fuzz module’s token_set_ratio function, which uses the same
token approach but compares sets of the tokens to see intersection and differ‐
ence. The function attempts to find the best possible match of sorted tokens and
returns the ratio of similarity for those tokens.

Here we can see an unintended side effect if we are not aware of similarities and dif‐
ferences in our dataset. One answer was improperly spelled. We know cheesecake and
cheese are not the same thing, but using the token set approach, these resulted in a
false positive. And sadly, we could not properly match our cheeseburger answer, even
though it’s the same. Can you do so using another method we’ve already learned?

One final matching method FuzzyWuzzy provides is the process module. This is
great if you have a limited amount of choices or options and messy data. Let’s say you
know the answer has to be yes, no, maybe, or decline to comment. Let’s take a look at
how we can match these up:

from fuzzywuzzy import process

choices = ['Yes', 'No', 'Maybe', 'N/A']

process.extract('ya', choices, limit=2)

process.extractOne('ya', choices)

180 | Chapter 7: Data Cleanup: Investigation, Matching, and Formatting

www.it-ebooks.info

http://www.it-ebooks.info/

process.extract('nope', choices, limit=2)

process.extractOne('nope', choices)

Uses FuzzyWuzzy’s extract method to compare strings to the list of possible
matches. The function returns two possible matches from the list of choices we
have declared in our choices variable.

Uses FuzzyWuzzy’s extractOne method to return only the best match between
our string and the list of available choices.

Aha! Given a variety of words we know “mean” the same thing, process can extract
the best guess—and in these cases, the correct guess. With extract we get tuples with
the ratios returned, and our code can parse through the string responses and com‐
pare how similar or different the matches are. The extractOne function just finds the
best match and returns it along with its ratio as a tuple. Depending on your needs,
you might opt for extractOne to help you simply find the best match and move
along.

You’ve learned all about matching strings now, so let’s talk a little about how to write
some similar string matching functions on your own.

RegEx Matching
Fuzzy matching may not always fit your needs. What if you just need to identify a
part of a string? What if you are only looking for a phone number or an email
address? These are problems you’ll encounter if you are scraping your data (as we will
learn about in Chapter 11) or compiling raw data from numerous sources. For a lot of
these problems, regular expressions can help.

Regular expressions allow computers to match, find, or eliminate patterns in strings
or data defined in the code. Regular expressions, or regex, are often feared by devel‐
opers since they can become complex and can be difficult to read and understand.
However, they can be quite useful, and a basic introduction to them can help you
read, write, and understand when regex can help solve your problem.

Despite their fearsome reputation, the basic regex syntax is fairly straightforward and
easy to learn. Table 7-1 covers the fundamentals.

Data Cleanup Basics | 181

www.it-ebooks.info

http://www.it-ebooks.info/

Table 7-1. Regex basics

Character/
Pattern

Legend Example match

\w Any alphanumeric character, including underscores a or 0 or _

\d Any digit 1 or 2 or 4

\s Any whitespace character ' '

+ One or more (greedy) of the pattern or character \d+ matches 476373

\. The . character .

* Zero or more (greedy) of the character or pattern (think of this almost as
an if)

\d* matches 03289 and ''

| Either the first pattern, or the next, or the next (like OR) \d|\w matches 0 or a

[] or () Character classes (defining what you expect to see in one character space)
and character groupings (defining what you expect to see in a group)

A matches [A-C] or (A|B|C)

- Binds character groups [0-9]+ matches \d+

For more examples, we recommend bookmarking a good regex cheat sheet.

There’s no need, especially as a Python developer, to memorize
regex syntax; however, well-written regex can help you in some
great ways. With Python’s built-in regex module, re, you can easily
search for basic matches and groupings.

Let’s take a look at some of the possibilities regex gives us:

import re

word = '\w+'
sentence = 'Here is my sentence.'

re.findall(word, sentence)

search_result = re.search(word, sentence)

search_result.group()

match_result = re.match(word, sentence)

182 | Chapter 7: Data Cleanup: Investigation, Matching, and Formatting

www.it-ebooks.info

http://bit.ly/regex_cheat_sheet
http://www.it-ebooks.info/

match_result.group()

Defines a basic pattern of a normal string. This pattern accounts for strings that
contain letters and numbers but not spaces or punctuation. It will match until it
doesn’t match (i.e., the + makes it greedy! nomnom!).

The re module’s findall method locates all the pattern matches in a string.
Every word we included in our sentence is found, but the period is missing. In
this case, we used the pattern \w, so punctuation and spaces are not included.

The search method allows us to search for a match throughout the string. If a
match is found, a match object is returned.

The match object’s group method returns the matched string.

The match method searches only from the beginning of the string. This operates
differently from search.

We can easily match words in a sentence, and depending on our needs, we can vary
how we find them. In this example, we saw findall return a list of all the matches.
Let’s say you only want to extract websites from a long text. You can use a regex pat‐
tern to find links and then use findall to extract all the links from the text. Or you
can find telephone numbers, or dates. The findall method is your go-to tool if you
can define what you are looking for in a simple pattern and apply it easily to your
string data.

We also used search and match, which in this case, returned the same thing—they
both matched the first word in the sentence. We returned a match object, and we
were able to access the data using the group method. The group method will also take
parameters. Try using .group(0) with one of your matches. What happened? What
do you think the 0 means? (Hint: think of lists!)

search and match are actually quite different. Let’s use them in a few more examples
so we can see the differences:

import re

number = '\d+'
capitalized_word = '[A-Z]\w+'

sentence = 'I have 2 pets: Bear and Bunny.'

search_number = re.search(number, sentence)

search_number.group()

Data Cleanup Basics | 183

www.it-ebooks.info

http://www.it-ebooks.info/

match_number = re.match(number, sentence)

match_number.group()

search_capital = re.search(capitalized_word, sentence)

search_capital.group()

match_capital = re.match(capitalized_word, sentence)

match_capital.group()

Defines a numerical pattern. The plus sign makes it greedy, so it will gobble up all
the digits it can until it reaches a non-digit character.

Defines a capitalized word match. This pattern uses the square brackets to define
a part of a longer pattern. These brackets tell our pattern the first letter we want is
a capital letter. Following that, we are just looking for a continued word.

What happens when we call group here? We see the match object returned from
our search method.

What result would you expect to see here? Likely the number, but instead we get
an error. Our match returns None, not a match object.

Now we can see the differences between search and match more clearly. We were
unable to find a good match with match, despite the fact that we had matches for each
of the searches we tried. How come? As mentioned previously, match starts from the
very beginning of the string, and if it doesn’t find a match there, it returns None. In
contrast, search will keep going until it finds a match. Only if it reaches the very end
of the string without finding any matches will it return None. So, if you need to assert
that a string matches or begins with an exact pattern, match is your friend. If you are
only looking for the first occurrence or any match in the string, then search is the
best option.

There was also a quick lesson on regex syntax here—did you catch it? What capital‐
ized word did you expect to find first? Was it “I” or “Bear”? How come we didn’t
catch “I”? What pattern would have matched both of them? (Hint: refer to the table
and take a look at what wildcard variables you can pass!)

Now that we have a better understanding of regex syntax and how to use it with
match, search, and findall, let’s see if we can create some patterns where we need to
reference more than one group. In the previous examples, we only had one pattern
group, so when we called the group method on a match, we only had one value. With
regex, however, you can find more than one pattern, and you can give your found

184 | Chapter 7: Data Cleanup: Investigation, Matching, and Formatting

www.it-ebooks.info

http://www.it-ebooks.info/

matched groups variable names so it’s easier to read your code and you can be sure
you have matched the proper group.

Let’s try it out!

import re

name_regex = '([A-Z]\w+) ([A-Z]\w+)'

names = "Barack Obama, Ronald Reagan, Nancy Drew"

name_match = re.match(name_regex, names)

name_match.group()

name_match.groups()

name_regex = '(?P<first_name>[A-Z]\w+) (?P<last_name>[A-Z]\w+)'

for name in re.finditer(name_regex, names):
 print 'Meet {}!'.format(name.group('first_name'))

Here we use the same capital word syntax twice, putting it in parentheses. Paren‐
theses are used to define groups.

Here we use the pattern with more than one regex group in our match method.
This will now return more than one group if it finds a match.

The groups method on our match shows a list of all the matches of groups we
found.

Naming our groups helps our code be clear and explicit. In this pattern, the first
group is first_name and the second group is last_name.

finditer is similar to findall, but it returns an iterator. We can view the
matches in our string one by one using this iterator.

Using our knowledge of string formatting, we print out our data. Here we only
pull the first name out of each match.

Naming pattern groups using ?P<variable_name> creates code that’s easy to under‐
stand. As our example shows, it’s also quite easy to create groups to capture two (or
more) particular patterns and their matching data. These techniques help take the
guesswork out of reading someone else’s (or your six-month-old) regex. Can you
write another example to match middle initials, if there are any?

The power of regex lets you quickly discern what’s in your strings and parse data
from your strings easily. They’re invaluable when it comes to parsing really messy

Data Cleanup Basics | 185

www.it-ebooks.info

http://www.it-ebooks.info/

datasets, like ones you get from web scraping. For more reading on regex, we recom‐
mend trying out the interactive regex parser at RegExr as well as walking through the
free Regular-Expressions.info tutorial.

Now that you have many methods to match things, you can easily find duplicates.
Let’s review our choices when it comes to duplicates we find in our datasets.

What to Do with Duplicate Records
Depending on the state of your data, you may want to combine your duplicate
records. If your dataset simply has duplicate rows, there is no need to worry about
preserving the data; it is already a part of the finished dataset and you can merely
remove or drop these rows from your cleaned data. If, however, you are combining
different sets of data and you wish to preserve pieces of the duplicate entries, you will
want to figure out how to best do so using Python.

We will review some comprehensive ways to join data in Chapter 9, using some new
libraries. However, you can easily combine rows of data in the original way you
parsed them. Let’s walk through an example of how to do so if you are using
DictReader to ingest your data. We’ll combine some rows of our male dataset. This
time, we want to combine the data based on household, so we can look at the surveys
on a house-by-house basis rather than a man-by-man basis:

from csv import DictReader

mn_data_rdr = DictReader(open('data/unicef/mn.csv', 'rb'))

mn_data = [d for d in mn_data_rdr]

def combine_data_dict(data_rows):
 data_dict = {}
 for row in data_rows:
 key = '%s-%s' % (row.get('HH1'), row.get('HH2'))
 if key in data_dict.keys():
 data_dict[key].append(row)
 else:
 data_dict[key] = [row]
 return data_dict

mn_dict = combine_data_dict(mn_data)

print len(mn_dict)

We use the DictReader module so we can easily parse all of the fields we want.

We define a function so we can reuse it with other UNICEF datasets. We are
going to call it combine_data_dict because the function will take data_rows,
combine them, and return a dictionary.

186 | Chapter 7: Data Cleanup: Investigation, Matching, and Formatting

www.it-ebooks.info

http://www.regexr.com/
http://www.regular-expressions.info/tutorial.html
http://www.it-ebooks.info/

This defines our new data dictionary to return.

Like we did in our earlier example where we created a unique key from the clus‐
ter, household, and line numbers, this code sets a unique key. “HH1” represents
the cluster number and “HH2” represents the household number. This code uses
these to map unique households.

If the household has already been added, this code extends the list representing
the data by adding the current row to the list.

If the household has not yet been added, this line adds a list with the current row
of data.

At the end of our function, this code returns the new data dictionary.

Now we run the function by passing our rows of data and assigning the new dic‐
tionary to a variable we can use. This code sets the final dictionary to mn_dict,
which we can now use to see how many unique households we have and how
many surveys we have per household.

If you forget the return at the end of a function, your function will
return None. Be on the lookout for return errors as you begin to
write your own functions.

We found approximately 7,000 unique households, meaning a little over 2,000 men
who were interviewed shared a household. The average number of men per house‐
hold for this interview was 1.3. Simple aggregations like this can give us some larger
insights into our data and help us conceptualize what it means and what questions we
can answer with the data we have available.

Summary
In this chapter, you learned the basics of data cleanup and why it’s an essential step in
your data wrangling process. You’ve seen some raw MICS data and interacted with it
firsthand. You’re now able to look at data and identify where you might have data
cleanup issues. You can now also find and remove erroneous data and duplicates.

The new concepts and libraries introduced in this chapter are detailed in Table 7-2.

Summary | 187

www.it-ebooks.info

http://www.it-ebooks.info/

Table 7-2. New Python and programming concepts and libraries

Concept/Library Purpose

List generators Enable quick and easy list assembly using an iterator, a function, and/or an if statement to
further clean and process your data.

Dictionary values
method

Returns a list of the dictionary’s values. Great for using to test membership.

in and not in
statements

Test membership. Usually used with strings or lists. Return a Boolean value.

List remove method Removes the first matching item passed from the list. Useful when you know exactly what you
want out of an already-created list

enumerate method Takes any iterable and returns a counter of what element you are on along with the value of that
element as a tuple.

List index method Returns the first matching index of the passed item in the list. If no match, returns None.

String format method Enables you to easily make a readable string from a series of data. Uses {} as data placeholders
and expects a matching number of data points to be passed. Can also be used with a dictionary
using key names and can be used with a variety of string formatters.

String formatting (.4f,
.2%, ,)

Flags used to format numbers into easily readable strings.

datetime strptime
and strftime methods

Enables you to easily format Python date objects into strings and create date objects out of
strings.

datetime timedelta
objects

Represents the difference between two Python date objects or modifies a date object (e.g., add
or subtract time).

if not statements Test whether the following statement is not True. Opposite Boolean logic from if statements.

is statements Test if the first object is the same as the other object. Great for type testing (e.g., is None,
is list). For more reading on is, check out Appendix E.

String isdigit and
isalpha methods

Test if the string object contains only digits or only letters. Returns a Boolean.

String find method Returns the index location of the passed substring in the string object. Will return -1 if it can’t
find a match.

Python set objects A collection class of only unique elements. Behaves much like a list but with no duplicate values.
Has numerous methods for comparison (union, intersection, difference).

188 | Chapter 7: Data Cleanup: Investigation, Matching, and Formatting

www.it-ebooks.info

https://docs.python.org/2/library/sets.html
http://www.it-ebooks.info/

Concept/Library Purpose

numpy package An essential mathematical Python library, used as part of the SciPy stack.

FuzzyWuzzy library A library used for fuzzy matching of strings.

Regular expressions and
the Python re library

Enable you to write patterns and find matches in strings.

As you move into the next chapter, you’ll keep honing those cleanup and data analy‐
sis skills and use them to better organize and replicate your cleanup tasks. We’ll
review normalizing and standardizing data and how we can script and test our data
cleanup.

Summary | 189

www.it-ebooks.info

http://www.numpy.org/
https://github.com/seatgeek/fuzzywuzzy
https://en.wikipedia.org/wiki/Regular_expression
https://docs.python.org/2/library/re.html
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8

Data Cleanup: Standardizing and Scripting

You’ve learned how to match, parse, and find duplicates in your data, and you’ve
started exploring the wonderful world of data cleanup. As you grow to understand
your datasets and the questions you’d like to answer with them, you’ll want to think
about standardizing your data as well as automating your cleanup.

In this chapter, we’ll explore how and when to standardize your data and when to test
and script your data cleanup. If you are managing regular updates or additions to the
dataset, you’ll want to make the cleanup process as efficient and clear as possible so
you can spend more time analyzing and reporting. We’ll begin by standardizing and
normalizing your dataset and determining what to do if your dataset is not
normalized.

Normalizing and Standardizing Your Data
Depending on your data and the type of research you are conducting, standardizing
and normalizing your dataset might mean calculating new values using the values
you currently have, or it might mean applying standardizations or normalizations
across a particular column or value.

Normalization, from a statistical view, often has to do with calculating new values
from a dataset to standardize the data on a particular scale. For example, you might
need to normalize scores for a test to scale so you can accurately view the distribu‐
tion. You might also need to normalize data so you can accurately see percentiles, or
percentiles across different groups (or cohorts).

Say you want to see the distribution of a team’s scores across a given season. You
might first categorize them as wins, losses, and ties. You might then categorize those
as points over, points under, and so on. You might also categorize minutes played and
scores per minute. You have access to all of these datasets, and now you’d like to

191

www.it-ebooks.info

http://www.it-ebooks.info/

compare them across teams. If you wanted to normalize them, you might normalize
total scores on a 0–1 scale. This would mean the outliers (top scores) would be close
to 1 and the low scores would be close to 0. You could then use the distribution of
that new data to see how many scores were in the middle, and if there were a lot in
the low or high range. You could also identify outliers (i.e., if most of the scores are
now between .3 and .4, then you know ones that don’t fall into that range might be
outliers).

What if you want to use standardization on that same data? For example, you could
standardize the data and calculate the average number of scores per minute. Then
you could chart your averages and see the distribution. What teams scored more per
minute? Are there outliers?

You could also calculate the distribution by looking at standard deviations. We’ll
cover standardization more fully in Chapter 9, but you are basically asking, what is
the normal range of the data and what is outside of that range? Does the data follow a
pattern or not?

As you can see, normalization and standardization are not the same thing. However,
they do often allow researchers or investigators to determine the distribution of their
data and what that means for future research or calculations.

Sometimes standardizing and normalizing your data also requires removing outliers
so you can better “see” the patterns and distribution of the data. Continuing with the
same sports analogy, if you remove the top-scoring players’ scores from the entire lea‐
gue, does it drastically change the way the teams perform? If one player is responsible
for half of his or her team’s scores, then yes, this could cause a dramatic shift.

Likewise, if one team always won by a significant number of points, removing that
team from the league data might dramatically shift the distribution and averages.
Depending on what problem you are trying to solve, you can use normalization,
standardization, and removal of outliers (trimming your data) to help find the
answers to your questions.

Saving Your Data
We’ve explored a few ways to save your data, so let’s review them now that we have
data we can use. If you are utilizing a database and already know how you’d like to
format your tables and save the data you have already cleaned, you should continue
to use the Python library modules we reviewed in Chapter 6 to connect and save your
data. For many of these libraries, you can open a cursor and commit directly to the
database.

192 | Chapter 8: Data Cleanup: Standardizing and Scripting

www.it-ebooks.info

http://www.it-ebooks.info/

We highly recommend adding failure messages and catches in your
database scripts, in case you experience a network or database fail‐
ure. We recommend committing frequently to help avoid network
or latency issues affecting your script.

If you are using the SQLite example we reviewed in Chapter 6, you’ll want to save
your new clean data into your database. Let’s take a look at how we can go about that:

import dataset

db = dataset.connect('sqlite:///data_wrangling.db')

table = db['unicef_survey']

for row_num, data in enumerate(zipped_data):
 for question, answer in data:
 data_dict = {
 'question': question[1],
 'question_code': question[0],
 'answer': answer,
 'response_number': row_num,
 'survey': 'mn',
 }

 table.insert(data_dict)

Here, we access our local database. If you stored the file in a different directory,
make sure to change the file path to reflect the database file location in relation to
your current file path (e.g., if it’s stored in the parent directory: file:///../datawran‐
gling.db).

This line creates a new table, unicef_data. Because we know many UNICEF sur‐
veys follow this pattern, this is a safe, clear name for our database.

We want to keep track of what row we are on so we have a number per response.
This code uses the enumerate function so each entry (of each row/response) is
easily linked in the database (they share a row number).

We know our data is broken into tuples, with our headers as a list in the first
entry in the tuple and the responses to those questions in the second part of the
tuple. This code uses a for loop so we can parse and save the data contained
therein.

Each question and answer has its own entry in our database, so we can join
together all of the responses for each row (i.e., interview). This code creates a dic‐
tionary with the necessary data for each response for each interview.

Saving Your Data | 193

www.it-ebooks.info

http://www.it-ebooks.info/

The plainly written question is the second entry in the list of the headers. This
code saves that data as question and the UNICEF short code as question_code.

In order to keep track of each row of responses, or interview, this code includes
the row_num from enumerate.

Finally, we insert our newly assembled dictionary into our database using our
new table’s insert method.

We want to make sure our cleaned data is preserved in our SQLite database. We cre‐
ated a new database, using the enumerate function so we could join together each
response (row). If we need to access our data, we can access our new table and use the
functions described in Chapter 6 to see all of our records and retrieve them as
needed.

If you instead would like to export the cleaned data to a simple file, it should be easy
to do that as well. Let’s take a look:

from csv import writer

def write_file(zipped_data, file_name):
 with open(file_name, 'wb') as new_csv_file:
 wrtr = writer(new_csv_file)
 titles = [row[0][1] for row in zipped_data[0]]
 wrtr.writerow(titles)
 for row in zipped_data:
 answers = [resp[1] for resp in row]
 wrtr.writerow(answers)

write_file(zipped_data, 'cleaned_unicef_data.csv')

Uses with...as to assign the first output to the second variable name. This
assigns the new file open(file_name, 'wb') creates to the variable
new_csv_file. 'wb' means write in binary mode.

Initializes our CSV writer object by passing it an open file, and assigns the writer
object to the wrtr variable.

Creates a list of the titles for the header row, since the writer object needs a list of
data to write row by row. The longer titles reside in the second element of the
first part of our tuple, so the code uses row[0][1].

Uses the writer object’s writerow method, which takes an iterable and turns it
into a comma-separated row. This line writes the header row.

194 | Chapter 8: Data Cleanup: Standardizing and Scripting

www.it-ebooks.info

http://www.it-ebooks.info/

Uses list comprehension to pull out the responses (the second value in the tuple).

Writes each of the lists or responses created using list comprehension to our
comma-separated data file.

Here we’ve used some new and some old syntax. We have learned how to use with...
as to take the response of a simple function and assign it to a variable name. Here,
we want to take our open file and assign it to our new_csv_file variable. This
type of syntax is often used with files and other I/O objects, because once Python
is done executing the code in the with block we created, it will close the file for
us—bellissimo!

Additionally in this code, we’ve used our CSV writer, which operates similarly to our
CSV reader. writerow helps us write a list containing each column of data to our
CSV.

The writerow method expects an iterable object, so make sure you
always pass a list or a tuple. If you pass a string, don’t be surprised
to see some interesting CSVs (“l,i,k,e, ,t,h,i,s”).

We’ve also used list comprehensions to help make lists of both titles and answers.
Because we don’t expect a new object or modified object from this function, we sim‐
ply don’t return anything. This function is good review of some of the concepts we’ve
learned so far.

If you’d rather save it in another way, refer to the tips we gave in Chapter 6 on how to
save your data. Once your cleaned data is saved, you can move onto securing the rest
of your cleanup process and analyzing your data.

Determining What Data Cleanup Is Right for Your Project
Depending on the reliability of your data and how often you will be analyzing it, you
might choose a different path for data cleanup. If the data you are working with is
haphazard or has many different sources, you might not be able to accurately script
your cleanup.

You need to analyze how much time and effort it takes to com‐
pletely script your cleanup and whether automating the cleanup
will actually save you time.

Determining What Data Cleanup Is Right for Your Project | 195

www.it-ebooks.info

http://www.it-ebooks.info/

If your cleanup is particularly onerous and involves many steps, you might want to
create a repository of helper scripts. This can give you many functions to reuse
throughout your data wrangling and enables you to process new data faster, even if
you can’t write a script that goes through all of the steps in order. For example, you
can have some scripts to search a list or matrix for duplicates, and some functions to
export or import data to/from CSVs or format strings and dates. With this type of
solution, you can import those functions and use them as you wish with IPython or
Jupyter (which we’ll learn about in Chapter 10), or in other files in the repository.

If your cleanup code instead matches a determinate pattern and is unlikely to change,
you can probably script the entire cleanup process.

Scripting Your Cleanup
As your Python knowledge deepens and grows, so will the Python you write. You are
now able to write functions, parse files, import and use various Python libraries, and
even store your data. It’s about time to start really scripting your code—and by that,
we mean deciding how to structure your code for future use, learning, and sharing.

Let’s take our UNICEF data as an example. We know UNICEF will release these data‐
sets every few years, and many of the data points will remain the same. It’s unlikely
the survey will change significantly—it’s built on years of experience. Given these
facts, we can likely depend on a fairly high level of consistency. If we are using UNI‐
CEF data again, we can probably reuse at least some of the same code we wrote for
this first script.

We currently don’t have a lot of structure and certainly are missing code documenta‐
tion. On top of making our code hard to read, this makes it difficult to reuse.
Although our functions make sense to us now, could we accurately read and under‐
stand them in a year? Could we pass them to a coworker and expect our notes to be
understood? Until we can answer these questions affirmatively, we may as well not
have written any code. If we can’t read our code in a year’s time, it will be of no use,
and someone (probably us) will have to rewrite it again when the new reports are
released.

The Zen of Python applies not only to how you write your code, but to how you orga‐
nize your code; name your functions, variables, and classes; and so on. It’s a good idea
to take some time to consider your naming choices and determine what will be both
clear to you and clear to others. Comments and documentation can help; however,
your code should be somewhat legible on its own.

196 | Chapter 8: Data Cleanup: Standardizing and Scripting

www.it-ebooks.info

http://www.it-ebooks.info/

Python is often heralded as one of the easiest to read languages,
even for those who can’t read code! Keep your syntax readable and
clean, and then your documentation will not have to go to great
lengths to explain what your code is doing.

Zen of Python
It’s always nice to refer to the Zen of Python (also easily accessible with an import
this). The gist of it is that with Python (and many languages), it’s always best to be
explicit, clean, and as practical as possible.

As your skills grow, what seems explicit and practical might alter, but we can whole‐
heartedly recommend you err on the side of writing code that is clear, precise, and
simple. Perhaps this will at times make your code a little slower or longer, but as you
gain experience you will find ways to write code that is both fast and clear.

For now, always err on the side of making things overly obvious, so when you review
the code later, you will understand what you intended.

Familiarize yourself with the PEP-8 Python Style Guide and stick to those rules.
There are plenty of PEP-8 linters which read through your code and point out issues.

In addition to style standards and uses, you can use linters for evaluating code com‐
plexity. There are several that analyze code according to McCabe’s theories and calcu‐
lations on cyclomatic complexity. Although you may not be able to break your code
into simple chunks every time, you should aim to break down complex tasks into
smaller, simpler ones and make your code less complicated and more explicit.

As you work to make your code clear and obvious, it’s also useful to make reusable
chunks more generic. Beware of becoming too generic (def foo will help no one),
but if you build generic helper functions you will reuse often (like making a CSV
from a list or making a set from a list of duplicates), your code will be more organ‐
ized, clean, and simple.

If all of your reports use the same code to connect with your data‐
base or to open a data file, you can make this a function. As you
write generic helper functions, your goal is to create simple code
that is readable, usable, and doesn’t repeat itself.

Table 8-1 summarizes some coding best practices to think about as you go forward.
These best practices don’t cover everything you’ll end up doing with Python and cod‐
ing, but they provide a good foundation for further scripting and learning.

Scripting Your Cleanup | 197

www.it-ebooks.info

https://www.python.org/dev/peps/pep-0020/
https://www.python.org/dev/peps/pep-0008/
http://bit.ly/cyclomatic_complexity
http://bit.ly/cyclomatic_complexity
http://www.it-ebooks.info/

Table 8-1. Python coding best practices

Practice Description

Documentation Include comments, function descriptions, and script clarifications throughout the code, as well as
README.md files or any other necessary description in the repository structure.

Clear naming All functions, variables, and files should have clear names that make their contents or intended use
obvious.

Proper syntax Variables and functions should follow proper Python syntax (generally lowercase with underscores
between words, or CamelCase for class names) and the code should follow PEP-8 standards.

Imports Only import what you need and use, and follow PEP-8 guidelines for your import structure.

Helper functions Create abstract helper functions to make your code clear and reusable (e.g., export_to_csv to
take a list and write a CSV export).

Repository
organization

Organize your repository into a logical and hierarchical structure, so code used together is organized
together and follows normal logical patterns.

Version control All code should be under version control, so you or your colleagues can create new branches, try out
new features, and still have a working master version of the repository.

Fast but clear Use the syntactic sugar of Python to write fast and efficient code, but err on the side of clarity if the
two are opposed.

Use libraries When you need to do something someone has already coded in Python, don’t reinvent the wheel. Use
good libraries and contribute to them to help the open source community.

Test your code When applicable and possible, test your code by using test example data and writing tests for your
individual functions.

Be specific Use proper exceptions in your try blocks, be specific in your documentation, and use specific variable
names.

Documenting your code is an essential part of writing any script. As Eric Holscher,
Pythonista and cofounder of Write the Docs, aptly summarizes, there are many great
reasons to document your code, the first being that you will probably need to use it
again—or others may need to read and use it, or you may want to post it on GitHub,
or you may want to use it in a future job interview, or you may want to send it to your
mom. Whatever the reason, having documentation with, in, and throughout your
code will save you hours of pain later. If you are a member of a team, it will save your
team hundreds of hours of pain. The payoff is worth the effort of sitting down to ana‐
lyze what your code is attempting to do and why.

198 | Chapter 8: Data Cleanup: Standardizing and Scripting

www.it-ebooks.info

https://en.wikipedia.org/wiki/CamelCase
http://bit.ly/writing_docs
http://www.it-ebooks.info/

There is a lot of great advice and help available from organizations like Read the Docs
and Write the Docs to make writing documentation easier. A good rule of thumb is to
have a README.md in the root of your project directory with a brief rundown of
what the code does, how one can install and run it, what are the requirements, and
where to find out more information.

Sometimes a small code sample or example in your README.md is
also useful, depending on how much interaction the user (reader)
is going to have with the core components.

In addition to your README.md file, you’ll want to add code comments. As we saw
in Chapter 5, these can vary from quick notes to yourself to longer comments docu‐
menting how to use your scripts and functions.

Thanks to PEP-350, the syntax and use of different types of com‐
menting in Python are well documented. Following these standards
will make your comments easy for everyone to understand.

Let’s take a stab at documenting what we’ve been doing in our cleanup chapters. To
get our creative documentation juices flowing, we’ll start with a simple list of the tasks
we set out to complete:

• Import data from UNICEF data files.
• Locate headers for data rows.
• Properly match headers we can read with cryptic built-in headers.
• Parse the data to see if we have dupes.
• Parse the data to see if we have missing data.
• Merge data with other rows based on household.
• Save data.

These are more or less in chronological order, and listing them takes some of the
agony out of figuring out how to organize and script our code and how to document
our new script.

One of the first things we need to do is organize all of the chunks of code we have
written in this chapter and the previous chapter into one script. Once we have them
all together, we can start to follow our rules for writing good code. Let’s take a look at
our script so far:

Scripting Your Cleanup | 199

www.it-ebooks.info

https://readthedocs.org/
http://www.writethedocs.org/
https://www.python.org/dev/peps/pep-0350/
http://www.it-ebooks.info/

from csv import reader
import dataset

data_rdr = reader(open('../../../data/unicef/mn.csv', 'rb'))
header_rdr = reader(open('../../../data/unicef/mn_headers_updated.csv', 'rb'))

data_rows = [d for d in data_rdr]
header_rows = [h for h in header_rdr if h[0] in data_rows[0]]

all_short_headers = [h[0] for h in header_rows]

skip_index = []
final_header_rows = []

for header in data_rows[0]:
 if header not in all_short_headers:
 print header
 index = data_rows[0].index(header)
 if index not in skip_index:
 skip_index.append(index)
 else:
 for head in header_rows:
 if head[0] == header:
 final_header_rows.append(head)
 break

new_data = []

for row in data_rows[1:]:
 new_row = []
 for i, d in enumerate(row):
 if i not in skip_index:
 new_row.append(d)
 new_data.append(new_row)

zipped_data = []

for drow in new_data:
 zipped_data.append(zip(final_header_rows, drow))

look for missing

for x in zipped_data[0]:
 if not x[1]:
 print x

look for dupes

set_of_keys = set([
 '%s-%s-%s' % (x[0][1], x[1][1], x[2][1]) for x in zipped_data])

uniques = [x for x in zipped_data if not

200 | Chapter 8: Data Cleanup: Standardizing and Scripting

www.it-ebooks.info

http://www.it-ebooks.info/

 set_of_keys.remove('%s-%s-%s' %
 (x[0][1], x[1][1], x[2][1]))]

print len(set_of_keys)

save to db

db = dataset.connect('sqlite:///../../data_wrangling.db')

table = db['unicef_survey']

for row_num, data in enumerate(zipped_data):
 for question, answer in data:
 data_dict = {
 'question': question[1],
 'question_code': question[0],
 'answer': answer,
 'response_number': row_num,
 'survey': 'mn',
 }

 table.insert(data_dict)

We can see most of our code is flat, meaning we don’t have nested levels of impor‐
tance. Much of the code and functions sit without indentation or documentation in
the file. It’s not well abstracted, and the variable names are unclear. Let’s start working
on parts of that, beginning at the top. The first two sets of lines repeat each other. Let’s
write a function to do that instead:

def get_rows(file_name):
 rdr = reader(open(file_name, 'rb'))
 return [row for row in rdr]

Now we can use this function to shorten our file. Let’s take a look at the next section
of code and see if we can improve it as well.

We are spending time rewriting our header_rows to align with headers from
data_rows; however, that bit of code is no longer needed. Because we create the
final_header_rows from matches between the two, we don’t need to worry about
header_rows with no data_rows to match. We can remove that line.

Lines 14–27 all deal with creating the final_header_rows and skip_index lists. We
can summarize these as both working on eliminating nonmatching elements so we
can zip our final list. Let’s put them together in one method:

def eliminate_mismatches(header_rows, data_rows):
 all_short_headers = [h[0] for h in header_rows]
 skip_index = []
 final_header_rows = []

 for header in data_rows[0]:

Scripting Your Cleanup | 201

www.it-ebooks.info

http://www.it-ebooks.info/

 if header not in all_short_headers:
 index = data_rows[0].index(header)
 if index not in skip_index:
 skip_index.append(index)
 else:
 for head in header_rows:
 if head[0] == header:
 final_header_rows.append(head)
 break
 return skip_index, final_header_rows

We have now combined even more sections of our cleanup into functions. This helps
us delineate what each function does and documents our code so if (or should we say,
when) we need to update it, we know exactly where to look.

Let’s read on in our script and see if we have more contenders. It looks like the next
section creates our zipped dataset. We could make this two functions: one to whittle
down our data rows into just those that match the headers, and another that zips the
two. We could also leave it as one function to create the zipped data. In the end, it’s up
to you to determine what might fit best. Here, we will keep it as one function with a
smaller helper function, in case we need it again:

def zip_data(headers, data):
 zipped_data = []
 for drow in data:
 zipped_data.append(zip(headers, drow))
 return zipped_data

def create_zipped_data(final_header_rows, data_rows, skip_index):
 new_data = []
 for row in data_rows[1:]:
 new_row = []
 for index, data in enumerate(row):
 if index not in skip_index:
 new_row.append(data)
 new_data.append(new_row)
 zipped_data = zip_data(final_header_rows, new_data)
 return zipped_data

With our new functions, we were able to preserve our code, clear up some variable
names, and add a helper function to zip headers with rows of data and return the list
of zipped data. The code is clearer and broken up more appropriately. We’re going to
continue to apply the same logic to the rest of the file. Let’s take a look at the result:

from csv import reader
import dataset

def get_rows(file_name):
 rdr = reader(open(file_name, 'rb'))

202 | Chapter 8: Data Cleanup: Standardizing and Scripting

www.it-ebooks.info

http://www.it-ebooks.info/

 return [row for row in rdr]

def eliminate_mismatches(header_rows, data_rows):
 all_short_headers = [h[0] for h in header_rows]
 skip_index = []
 final_header_rows = []

 for header in data_rows[0]:
 if header not in all_short_headers:
 index = data_rows[0].index(header)
 if index not in skip_index:
 skip_index.append(index)
 else:
 for head in header_rows:
 if head[0] == header:
 final_header_rows.append(head)
 break
 return skip_index, final_header_rows

def zip_data(headers, data):
 zipped_data = []
 for drow in data:
 zipped_data.append(zip(headers, drow))
 return zipped_data

def create_zipped_data(final_header_rows, data_rows, skip_index):
 new_data = []
 for row in data_rows[1:]:
 new_row = []
 for index, data in enumerate(row):
 if index not in skip_index:
 new_row.append(data)
 new_data.append(new_row)
 zipped_data = zip_data(final_header_rows, new_data)
 return zipped_data

def find_missing_data(zipped_data):
 missing_count = 0
 for question, answer in zipped_data:
 if not answer:
 missing_count += 1
 return missing_count

def find_duplicate_data(zipped_data):
 set_of_keys = set([
 '%s-%s-%s' % (row[0][1], row[1][1], row[2][1])
 for row in zipped_data])

Scripting Your Cleanup | 203

www.it-ebooks.info

http://www.it-ebooks.info/

 uniques = [row for row in zipped_data if not
 set_of_keys.remove('%s-%s-%s' %
 (row[0][1], row[1][1], row[2][1]))]

 return uniques, len(set_of_keys)

def save_to_sqlitedb(db_file, zipped_data, survey_type):
 db = dataset.connect(db_file)

 table = db['unicef_survey']
 all_rows = []

 for row_num, data in enumerate(zipped_data):
 for question, answer in data:
 data_dict = {
 'question': question[1],
 'question_code': question[0],
 'answer': answer,
 'response_number': row_num,
 'survey': survey_type,
 }
 all_rows.append(data_dict)

 table.insert_many(all_rows)

Now we have a bunch of nice functions, but we’ve gutted how the program runs. If
we run this script right now, no lines of code execute. It’s just a set of written func‐
tions never called by anything.

We need to now work on re-creating how to use all these steps in a main function.
The main function is often where Python developers will put code intended to run via
the command line. Let’s add our main function with the code to clean our datasets:

""" This section goes at the bottom of the script we've already written. """

def main():
 data_rows = get_rows('data/unicef/mn.csv')
 header_rows = get_rows('data/unicef/mn_headers_updated.csv')
 skip_index, final_header_rows = eliminate_mismatches(header_rows,
 data_rows)
 zipped_data = create_zipped_data(final_header_rows, data_rows, skip_index)
 num_missing = find_missing_data(zipped_data)
 uniques, num_dupes = find_duplicate_data(zipped_data)
 if num_missing == 0 and num_dupes == 0:
 save_to_sqlitedb('sqlite:///data/data_wrangling.db', zipped_data)
 else:
 error_msg = ''
 if num_missing:
 error_msg += 'We are missing {} values. '.format(num_missing)
 if num_dupes:

204 | Chapter 8: Data Cleanup: Standardizing and Scripting

www.it-ebooks.info

http://www.it-ebooks.info/

 error_msg += 'We have {} duplicates. '.format(num_dupes)
 error_msg += 'Please have a look and fix!'
 print error_msg

if __name__ == '__main__':
 main()

Now we have an executable file we can run from the command line. What happens
when you run this file? Do you get our newly created error message, or has your data
been saved to your local SQLite database?

Making a File Command-Line Executable
Most Python files meant to be executed via the command line will have a few
attributes in common. They will usually have a main function that utilizes smaller or
helper functions, similar to what we built here for our cleanup.

That main function is usually called from a code block on the main indentation level
of the file. The syntax used is if __name__ == '__main__':. This syntax uses global
private variables (hence the double underscores around the names) and returns True
when you are running the file from the command line.

Code in this if statement will not execute if the script is not being run from the com‐
mand line. If we imported these functions into another script, the __name__ variable
would not be '__main__' and the code would not execute. This is a widely used con‐
vention for Python scripts.

If you run into any errors, try checking to make sure your code
looks exactly like this and you are using the proper file paths to the
data from the repository and the local database you created in
Chapter 6.

Now let’s put some work into documenting our code. We’re going to add some doc‐
strings to our functions, some inline notes so we can easily read the more complex
bits of our script, and a larger explanation at the top of the script that we might move
to a README.md file:

Scripting Your Cleanup | 205

www.it-ebooks.info

http://www.it-ebooks.info/

"""
Usage: python our_cleanup_script.py

This script is used to intake the male survey data from UNICEF
and save it to a simple database file after it has been checked
for duplicates and missing data and after the headers have been properly
matched with the data. It expects there to be a 'mn.csv' file with the
data and the 'mn_updated_headers.csv' file in a subfolder called 'unicef' within
a data folder in this directory. It also expects there to be a SQLite
file called 'data_wrangling.db' in the root of this directory. Finally,
it expects to utilize the dataset library
(http://dataset.readthedocs.org/en/latest/).

If the script runs without finding any errors, it will save the
cleaned data to the 'unicef_survey' table in the SQLite.
The saved data will have the following structure:
 - question: string
 - question_code: string
 - answer: string
 - response_number: integer
 - survey: string

The response number can later be used to join entire responses together
(i.e., all of response_number 3 come from the same interview, etc.).

If you have any questions, please feel free to contact me via ...
"""

from csv import reader
import dataset

def get_rows(file_name):
 """Return a list of rows from a given csv filename."""
 rdr = reader(open(file_name, 'rb'))
 return [row for row in rdr]

def eliminate_mismatches(header_rows, data_rows):
 """
 Return index numbers to skip in a list and final header rows in a list
 when given header rows and data rows from a UNICEF dataset. This
 function assumes the data_rows object has headers in the first element.
 It assumes those headers are the shortened UNICEF form. It also assumes
 the first element of each header row in the header data is the
 shortened UNICEF form. It will return the list of indexes to skip in the
 data rows (ones that don't match properly with headers) as the first element
 and will return the final cleaned header rows as the second element.
 """
 all_short_headers = [h[0] for h in header_rows]
 skip_index = []
 final_header_rows = []

206 | Chapter 8: Data Cleanup: Standardizing and Scripting

www.it-ebooks.info

http://www.it-ebooks.info/

 for header in data_rows[0]:
 if header not in all_short_headers:
 index = data_rows[0].index(header)
 if index not in skip_index:
 skip_index.append(index)
 else:
 for head in header_rows:
 if head[0] == header:
 final_header_rows.append(head)
 break
 return skip_index, final_header_rows

def zip_data(headers, data):
 """
 Return a list of zipped data when given a header list and data list. Assumes
 the length of data elements per row and the length of headers are the same.

 example output: [(['question code', 'question summary', 'question text'],
 'resp'),]
 """
 zipped_data = []
 for drow in data:
 zipped_data.append(zip(headers, drow))
 return zipped_data

def create_zipped_data(final_header_rows, data_rows, skip_index):
 """
 Returns a list of zipped data rows (matching header and data) when given a
 list of final header rows, a list of data rows, and a list of indexes on
 those data rows to skip as they don't match properly. The function assumes
 the first row in the data rows contains the original data header values,
 and will remove those values from the final list.
 """
 new_data = []
 for row in data_rows[1:]:
 new_row = []
 for index, data in enumerate(row):
 if index not in skip_index:
 new_row.append(data)
 new_data.append(new_row)
 zipped_data = zip_data(final_header_rows, new_data)
 return zipped_data

def find_missing_data(zipped_data):
 """
 Returns a count of how many answers are missing in an entire set of zipped
 data. This function assumes all responses are stored as the second element.
 It also assumes every response is stored in a list of these matched question,

Scripting Your Cleanup | 207

www.it-ebooks.info

http://www.it-ebooks.info/

 answer groupings. It returns an integer.
 """
 missing_count = 0
 for response in zipped_data:
 for question, answer in response:
 if not answer:
 missing_count += 1
 return missing_count

def find_duplicate_data(zipped_data):
 """
 Returns a list of unique elements and a number of duplicates found when given
 a UNICEF zipped_data list. This function assumes that the first three rows of
 data are structured to have the house, cluster, and line number of the
 interview and uses these values to create a unique key that should not be
 repeated.
 """

 set_of_keys = set([
 '%s-%s-%s' % (row[0][1], row[1][1], row[2][1])
 for row in zipped_data])

 #TODO: this will throw an error if we have duplicates- we should find a way
 #around this
 uniques = [row for row in zipped_data if not
 set_of_keys.remove('%s-%s-%s' %
 (row[0][1], row[1][1], row[2][1]))]

 return uniques, len(set_of_keys)

def save_to_sqlitedb(db_file, zipped_data, survey_type):
 """
 When given a path to a SQLite file, the cleaned zipped_data, and the
 UNICEF survey type that was used, saves the data to SQLite in a
 table called 'unicef_survey' with the following attributes:
 question, question_code, answer, response_number, survey
 """
 db = dataset.connect(db_file)

 table = db['unicef_survey']
 all_rows = []

 for row_num, data in enumerate(zipped_data):
 for question, answer in data:
 data_dict = {
 'question': question[1],
 'question_code': question[0],
 'answer': answer,
 'response_number': row_num,
 'survey': survey_type,

208 | Chapter 8: Data Cleanup: Standardizing and Scripting

www.it-ebooks.info

http://www.it-ebooks.info/

 }
 all_rows.append(data_dict)

 table.insert_many(all_rows)

def main():
 """
 Import all data into rows, clean it, and then if
 no errors are found, save it to SQlite.
 If there are errors found, print out details so
 developers can begin work on fixing the script
 or seeing if there is an error in the data.
 """

 #TODO: we probably should abstract these files so that we can pass
 # them in as variables and use the main function with other surveys
 data_rows = get_rows('data/unicef/mn.csv')
 header_rows = get_rows('data/unicef/mn_updated_headers.csv')
 skip_index, final_header_rows = eliminate_mismatches(header_rows,
 data_rows)
 zipped_data = create_zipped_data(final_header_rows, data_rows, skip_index)
 num_missing = find_missing_data(zipped_data)
 uniques, num_dupes = find_duplicate_data(zipped_data)
 if num_missing == 0 and num_dupes == 0:
 #TODO: we probably also want to abstract this
 # file away, or make sure it exists before continuing
 save_to_sqlite('sqlite:///data_wrangling.db', zipped_data, 'mn')
 else:
 #TODO: eventually we probably want to log this, and
 # maybe send an email if an error is thrown rather than print it
 error_msg = ''
 if num_missing:
 error_msg += 'We are missing {} values. '.format(num_missing)
 if num_dupes:
 error_msg += 'We have {} duplicates. '.format(num_dupes)
 error_msg += 'Please have a look and fix!'
 print error_msg

if __name__ == '__main__':
 main()

Our code is now better documented, organized, and it has a clear set of reusable func‐
tions. This is a great start for our first script. Hopefully, we can use this code to
import many sets of UNICEF data!

We’ve also put in some “TODO” notes for ourselves so we can
improve the script over time. Which issues do you think are the
most pressing? Why? Can you take a stab at fixing them?

Scripting Your Cleanup | 209

www.it-ebooks.info

http://www.it-ebooks.info/

We only have one file to run our code. However, as your code grows, your repository
will as well. It’s important to think about what you might add to your repository over
time early on. Code and code structure are pretty similar. If you think this repository
might be used for more than just UNICEF data parsing, you might want to organize
it differently.

How so? For one thing, you might want to keep the data in a separate file. In fact,
depending on how large your repository might grow, you might want the different
data parsers and cleaners in separate folders.

Don’t worry too much about these decisions at the beginning. As
you get better at Python and understanding your datasets, it will
begin to be more obvious to you where to begin.

In terms of organizing your repository, it is fairly common to have a utils or common
folder where you can store parts of the script shared among sections of code. Many
developers store things like database connection scripts, commonly used API code,
and communication or email scripts in such a folder, so they can be imported easily
into any other script.

Depending on how the rest of your repository is managed, you might have several
directories set up to contain different aspects of your project. One directory could be
related only to UNICEF data. Another could contain web-scraping scripts or final
reporting code. How you organize your repository is up to you. Always opt for being
clear, obvious, and organized.

If you end up needing to reorganize your repository later, it will be far less awful if
you took time to organize it in the first place. If, on the other hand, your repository is
rife with 800-line files and no clear documentation, you’ll have quite a task at hand.
The best rule of thumb is to outline a good starting point for organization, and do
occasional housekeeping as your repository grows and changes.

Outside of file organization, naming your directories, files, functions, and classes in
clear and obvious ways will also help. In the utils folder, you might have half a dozen
files. If you name them utils1, utils2, and so on, you will always need to look and see
what they contain. However, if you have named them email.py, database.py, twit‐
ter_api.py, and so on, the filenames will give you more information.

Being explicit in every aspect of your code is a great start to a long and prosperous
career in Python data wrangling. Let’s think about our repository and organize how
we might expect to find our files:

210 | Chapter 8: Data Cleanup: Standardizing and Scripting

www.it-ebooks.info

http://www.it-ebooks.info/

data_wrangling_repo/
|-- README.md
|-- data_wrangling.db
|-- data/
| `-- unicef/
| |-- mn.csv
| |-- mn_updated_headers.csv
| |-- wm.csv
| `-- wm_headers.csv
|-- scripts/
| `-- unicef/
| `-- unicef_cleanup.py (script from this chp)
`-- utils/
 |-- databases.py
 `-- emailer.py

We haven’t yet written a databases or emailer file, but we probably should. What else
could we add to the structure? Why do you think we made two different unicef fold‐
ers in our repository? Should developers separate their data files from the script files?

While your project’s folder structure may look like this, bear in
mind that data is not usually stored or housed in a repository. Keep
the data files for your project on a shared file server or somewhere
on the local network. If you are working alone, make sure you have
a backup somewhere. Don’t check these large files into your reposi‐
tory. Not only will it slow down work if you need to check out the
repository on a new device, but it’s also not a smart way to manage
your data.

We would advise against checking your db files or any log or config files into your
repository. Do your best to build the structure in a convenient way. You can always
add the expected structure of the files in your README.md and provide details about
where to get the data files.

Git and .gitignore
If you’re not already using Git for your version control needs, you will be by the end
of this book! Version control allows you to create a repository to manage and update
your code and share it with your team or other colleagues.

We’ll review Git in more depth in Chapter 14, but we wanted to call attention
to .gitignore files while we are discussing repository structure. .gitignore files tell Git
what it should ignore and not update or upload to the repository. It uses a simple pat‐
tern to match filenames, similar to the regex we learned about in Chapter 7.

In our repository structure, we could use a .gitignore file to tell Git we don’t want any
of the data files checked into the repository. We could then use the README.md to

Scripting Your Cleanup | 211

www.it-ebooks.info

https://git-scm.com/
https://github.com/github/gitignore
http://www.it-ebooks.info/

explain the structure of the repository and provide contact information for the data
files. This keeps our repository clean and easy to download and allows us to still
retain a nice structure for our code.

Creating a logical repository structure and using README.md and .gitignore files
allows you to have an organized project folder with modular code and avoid storing
large data files or potentially sensitive data (database or login data) in your repository.

Testing with New Data
Now that we’ve documented, scripted, and organized our code, we should write some
tests or try it out using test data. This helps ensure we’ve properly executed what we’d
like to see and keeps our code well defined. Because one of the reasons we scripted
the data cleanup was so we could reuse it, testing it with new data proves our time
and effort standardizing the code were appropriately spent.

One way we can test the script we have just written is to see how easily we can apply it
to similar data we find on the UNICEF website. Let’s take a look and see. You should
have the wm.csv and wm_headers.csv files from the repository. These files are data for
the women’s survey from the Zimbabwe UNICEF data.

Let’s try using those files in our script instead of the men’s survey data. To do so, we
change just those two filenames from our cleanup script to point to the two women’s
survey data files. We should also change the survey type to 'wm', so we can differenti‐
ate the data found in each set.

The women’s dataset is significantly larger than the men’s. If you
have unsaved data, we recommend saving it and closing other pro‐
grams before proceeding. On that note, it’s probably a good idea to
start considering how we can improve memory usage in our script.

Let’s take a look and see if it successfully imported our data:

import dataset

db = dataset.connect('sqlite:///data_wrangling.db')

wm_count = db.query('select count(*) from unicef_survey where survey="wm"')

count_result = wm_count.next()

print count_result

212 | Chapter 8: Data Cleanup: Standardizing and Scripting

www.it-ebooks.info

https://github.com/jackiekazil/data-wrangling
http://www.it-ebooks.info/

We use a direct query so we can quickly see the number of rows we have where
survey='wm'. This should only include rows from the second run, where we set
the type to 'wm'.

This reads the result of our query, using the query reponse’s next method to pull
the first result. Because we used count, we should only have one response with
the count.

So, we successfully imported more than 3 million questions and answers from our
women’s dataset. We know our script works, and we can see the results!

Testing your script using similar data is one way to go about ensuring it works as
intended. It can also show your script is built generally enough for reuse. However,
there are many other ways to test your code. Python has quite a few good testing
libraries to help you write test scripts and utilize test data (and even test API respon‐
ses) so you can ensure your code functions properly.

There are several testing modules built into Python’s standard library. unittest pro‐
vides unit tests for your Python code. It comes with some nice built-in classes with
assert statements to test whether your code is working. If we were to write unit tests
for our code, we could write one to assert the get_rows function returns a list. We
could also assert the length of the list and the number of data lines in the file are the
same. Each function can have these tests and assertions.

Another popular Python testing framework is nose. nose is a very powerful testing
framework with quite a lot of options in terms of extra plugins and configuration. It’s
great if you have a large repository with different testing requirements and many
developers working on the same code.

Can’t decide which one to start with? Then pytest might be right for you. It allows
you to write tests in either style and switch if need be. It also has a fairly active com‐
munity for talks and tutorials, so it’s a great place to start if you want to learn more
and then start writing your tests.

Normally, your test suite would be organized with a test file in each
module (i.e., given our current repository structure, we would put
a test file in each directory we have except for our data and config‐
uration folders). Some people write a test file for every Python file
in each folder, so that it’s easy to see where the tests are for specific
files. Others use a separate directory including the tests, with a
structure that maps to the same Python files in the script part of the
structure.

Testing with New Data | 213

www.it-ebooks.info

https://docs.python.org/2/library/unittest.html
https://nose.readthedocs.org/en/latest/
http://bit.ly/builtin_nose_plugins
http://pytest.org/latest/
http://bit.ly/pytest_talks_posts
http://www.it-ebooks.info/

Whatever test style or organization you choose, make sure you are consistent and
clear. That way you’ll always know where to look for the tests, and you (and others)
will be able to run them as needed.

Summary
In this chapter, we covered some basics in terms of standardizing your data, and
when it might be useful to normalize your data or remove outliers. You were able to
export your clean data (from your work in Chapter 6) into your database or a local
file, and you began writing more coherent functions for those repetitive processes.

Additionally, you’ve worked on organizing your Python repository with nested fold‐
ers and properly named files, and started to document and analyze your code. Finally,
you had a basic introduction to testing, and some of the tools you’ll have at your dis‐
posal when you start writing your tests.

Table 8-2 lists the Python concepts covered in this chapter.

Table 8-2. New Python and programming concepts and libraries

Concept/Library Purpose

Dataset insert method Allows you to easily store your data into your SQLite database using an insert command.

CSV writer object Lets you store your data in a CSV using the csv writer class.

Zen of Python (import
this)

A philosophy for how to write and think like a Python programmer.

Python best practices A basic outline of some best practices to follow as a new Python developer.

Python command-line
execution (if __name__
== '__main__':)

Formatting a script with this block allows you to run your main function from the
command line.

TODO notation Allows you to easily see what needs to be done for your script via commenting.

Git Version control system to help track changes in your code. Absolutely essential for code you
want to deploy or use with others, but also incredibly useful on a local solo project. More on
Git in Chapter 14.

In the next chapter, you’ll keep honing those cleanup and data analysis skills and use
them to help prep a new dataset, as we move on to analyzing your data.

214 | Chapter 8: Data Cleanup: Standardizing and Scripting

www.it-ebooks.info

https://git-scm.com/
http://www.it-ebooks.info/

CHAPTER 9

Data Exploration and Analysis

Now that you’ve spent time acquiring and cleaning your data, you are ready to start
analyzing! It’s important to approach your data exploration with very few expecta‐
tions for outcomes. Your question could be too broad for a singular answer, or it
might not have a conclusive answer. Recall learning about hypotheses and conclu‐
sions in your first science course? It’s best to approach your data exploration with
those same methods in mind—and with an understanding that you may not find a
clear conclusion.

That said, just exploring the data and finding there are no trends or the trends don’t
match your expectations is part of the fun. If everything was how we expected it to be,
data wrangling would be a bit boring. We’ve learned to expect little and explore a lot.

As you begin to analyze and explore your data, you might realize
you need more data or different data. That’s all part of the process
and should be embraced as you further define the questions you
aim to answer and examine what the data is telling you.

Now is also a great time to revisit the initial questions you had when you found your
dataset(s). What do you want to know? Are there other related questions to aid your
exploration? Those questions might point you in a direction where you find a story. If
not, they might lead to other interesting questions. Even if you can’t answer your ini‐
tial question, you can reach a greater understanding of the topic and discover new
questions to explore.

In this chapter, we will learn about some new Python libraries for data exploration
and analysis, and continue to apply what we’ve learned about cleaning our data from
the previous two chapters. We’ll take a look at how to join datasets, explore the data,
and come to statistical conclusions about relationships in our datasets.

215

www.it-ebooks.info

http://www.it-ebooks.info/

Exploring Your Data
You learned how to parse and clean your data in the preceding chapters, so you
should be familiar with interacting with your data in Python. Now we will take a
more in-depth look at exploring data with Python.

To begin with, we will install a helper library, agate, that will allow us to start looking
at some basic features of our data. It’s a data-analysis library built by Christopher
Groskopf, an accomplished data journalist and Python developer, and it can help us
get to know our data. To install the library, use pip:

pip install agate

This chapter is compatible with agate 1.2.0. Because agate is a rel‐
atively young library, it’s possible some of this functionality will
change as the library matures. To ensure you install a particular
version of a library, you can set that as you use pip. For this book,
you can install agate using: pip install agate==1.2.0. We rec‐
ommend you also test the latest and feel free to keep track of code
changes on the book’s repository.

We want to investigate some of the features of the agate library. To do that, we’ll be
using the data we acquired from UNICEF’s annual report on child labor.

Importing Data
To begin, we’ll take a look at our first dataset—UNICEF’s child labor summary data.
The data we downloaded was an Excel file containing listings of different percentages
of child labor around the world. We can use what we learned about Excel files and
data cleaning from Chapters 4 and 7 to get the data into a format accepted by the
agate library.

As we work through the Excel sheet, we recommend having the
sheet open in your preferred Excel viewer. This makes it easier to
compare what Python “sees” with what you see in the sheet, facili‐
tating navigation and extraction.

First, we want to import the libraries we anticipate needing and get the Excel file into
an xlrd notebook:

216 | Chapter 9: Data Exploration and Analysis

www.it-ebooks.info

http://agate.readthedocs.org/
https://github.com/onyxfish
https://github.com/onyxfish
http://data.unicef.org/child-protection/child-labour.html
http://www.it-ebooks.info/

import xlrd
import agate

workbook = xlrd.open_workbook('unicef_oct_2014.xls')

workbook.nsheets

workbook.sheet_names()

We now have our Excel data in a variable called workbook. This worksheet contains
one sheet, named Child labour.

If you’re running this in your IPython terminal (recommended, as you’ll see more
output), you should see the following:

In [6]: workbook.nsheets
Out[6]: 1

In [7]: workbook.sheet_names()
Out[7]: [u'Child labour ']

Try selecting the sheet so you can import it into the agate library. According to the
agate library documentation, it can import data with a list of titles, a list of types for
the columns of data, and a data reader (or an iterable list of the data). So, we’ll need
the data types so we can properly import the data from the sheet into the agate
library:

sheet = workbook.sheets()[0]

sheet.nrows

sheet.row_values(0)

for r in range(sheet.nrows):
 print r, sheet.row(r)

nrows identifies how many rows are in our sheet.

row_values allows us to select a single row and display its values. In this case, it
shows the title, as it is on the first line of the Excel file.

By using range and a for loop to iterate over every row, we can see each line as
Python sees it. The sheet’s row method will return some information on the data
and data type for each row.

We know from Chapter 3, the csv library takes an open file and turns it into an itera‐
tor. An iterator is an object we can iterate or loop over, returning each of its values
one at a time. In code, an iterator is a more efficient way of unpacking data than a list,
as it has speed and performance advantages.

Exploring Your Data | 217

www.it-ebooks.info

http://bit.ly/agate_tutorial
http://www.it-ebooks.info/

Because we’re working with a relatively small dataset, we can create
a list and pass it in place of an iterator. Most libraries that require
an iterator work fine with any iterable object (like a list). This way,
we’re still complying with what our xlrd and agate libraries expect.

First, let’s get the titles of our columns. From our previous output, we can see the
titles are in 4 and row 5. We will use zip to grab our title rows:

title_rows = zip(sheet.row_values(4), sheet.row_values(5))

title_rows

Now we can see the value of our title_rows variable is:

[('', u'Countries and areas'),
 (u'Total (%)', ''),
 ('', ''),
 (u'Sex (%)', u'Male'),
 ('', u'Female'),
 (u'Place of residence (%)', u'Urban'),
 ('', u'Rural'),
 (u'Household wealth quintile (%)', u'Poorest'),
 ('', u'Second'),
 ('', u'Middle'),
 ('', u'Fourth'),
 ('', u'Richest'),
 (u'Reference Year', ''),
 (u'Data Source', '')]

Using both rows retains extra information we would lose if we chose only one. It’s a
perfect match and we could spend some extra time improving this, but for an initial
exploration of the data, it’s a good first start. The title data is currently in a list of
tuples. We know the agate library expects a tuple list where the first value is the title
strings, so we should turn our titles into a list of strings:

titles = [t[0] + ' ' + t[1] for t in title_rows]

print titles

titles = [t.strip() for t in titles]

In this code, we use two list generators. In the first one, we pass our title_rows list,
which is a list of tuples. In those tuples, we have strings from the Excel file’s title rows.

The first list generator takes both parts of the tuple (using indexing) to create one
string. We add each of those tuple values together, using ' ' for readability. Now our
titles list is just a list of strings—the tuples are gone! We’ve made the titles a bit mess‐
ier though, as not every tuple has two values. By adding the space, we created some
titles with leading spaces, like ' Female'.

218 | Chapter 9: Data Exploration and Analysis

www.it-ebooks.info

http://www.it-ebooks.info/

To remove the leading spaces, in the second iterator we use the strip string method,
which removes leading and trailing spaces. Now our titles variable has a clean list
of strings for use with the agate library.

Our titles are sorted out, so now we need to choose which lines to use from our Excel
file. Our sheet has both country and continent data, but let’s focus on the country
data. We want to avoid accidentally mixing in the totals with our data. We know from
our previous code output that lines 6–114 have the data we want to use. We will use
the row_values method to return the values of the rows from the xlrd sheet object:

country_rows = [sheet.row_values(r) for r in range(6, 114)]

Now we have our titles and our data list, so we only need to define the types to import
it into the agate library. According to the documentation on defining columns, we
have text, Boolean, number, and date columns, and the library’s authors advise us to
use text if we are unsure of the type. There is also a built-in TypeTester we can use to
guess the types. To begin, we are going to use some of the xlrd built-ins to help
define our columns:

from xlrd.sheet import ctype_text
import agate

text_type = agate.Text()
number_type = agate.Number()
boolean_type = agate.Boolean()
date_type = agate.Date()

example_row = sheet.row(6)

print example_row

print example_row[0].ctype
print example_row[0].value

print ctype_text

By performing a visual check on this row, we see we have good data. Other than
one empty column, xlrd is identifying all of the data.

In these lines, we call the ctype and value attributes to get the type and value
attributes of each cell.

You can easily find new methods and attributes when using
IPython by creating a new object out of something you’re curi‐
ous to see and adding a period at the end and pressing Tab.
This will populate a list of attributes and methods you can fur‐
ther explore.

Exploring Your Data | 219

www.it-ebooks.info

http://bit.ly/agate_tutorial
http://bit.ly/agate_typetester
http://www.it-ebooks.info/

Using the ctype_text object from the xlrd library, we can match up the integers
returned by the ctype method and map them to something readable. This is a
great alternative to mapping types by hand.

This code gives us a better idea of the tools we have available to define types. The
ctype method and ctype_text object can be used to order and show data types given
the example row.

Although it can seem like a lot of work to create lists this way, they
provide reusability that will save you time. Reusing code snippets
will save you countless tedious hours later and is a fun aspect of
writing your own code.

Now we know what functions we can use to investigate Excel column types, so we
need to try to make a list of types for our agate library. We will need to iterate over
our example row and use ctype to match the column types:

types = []

for v in example_row:
 value_type = ctype_text[v.ctype]
 if value_type == 'text':
 types.append(text_type)
 elif value_type == 'number':
 types.append(number_type)
 elif value_type == 'xldate':
 types.append(date_type)
 else:
 types.append(text_type)

Maps the integers we found when we explored the ctype attribute of each row
with the ctype_text dictionary to make them readable. Now value_type holds
the column type string (i.e., text, number, etc.).

Uses if and elif statements with the == operator to match value_type with the
agate column types. Then, the code appends the proper type to the list and
moves on to the next column.

As advised by the library’s documentation, if there is no type match, we append
the text column type.

Now we’ve constructed a function to take an empty list, iterate over the columns, and
create a full list of all of the column types for our dataset. After running the code we
have our types, our titles, and a list of our data. We can zip the titles with the types

220 | Chapter 9: Data Exploration and Analysis

www.it-ebooks.info

http://www.it-ebooks.info/

and try importing the result into our agate table by running the following line of
code:

table = agate.Table(country_rows, titles, types)

When you run the code you should see a CastError, with the message Can not con
vert value "-" to Decimal for NumberColumn.

As we covered in Chapters 7 and 8, learning how to clean your data is an essential
part of data wrangling. Writing well-documented code allows you to save time in the
future. By reading this error message, we realize we have some bad data lying around
in one of our number columns. Somewhere in our sheet, the data is placing '-'
instead of '', which would be properly processed as null. We can write a function to
handle this problem:

def remove_bad_chars(val):
 if val == '-':
 return None
 return val

cleaned_rows = []

for row in country_rows:
 cleaned_row = [remove_bad_chars(rv) for rv in row]
 cleaned_rows.append(cleaned_row)

Defines a function to remove bad characters (like '-' in an integer column)

If the value is equal to '-', selects this value to be replaced

If the value is '-', returns None

Iterates through country_rows to create newly cleaned rows with the proper data

Creates a cleaned_rows list holding the clean data (using the append method)

When we write functions to modify values, keeping a default
return outside of the main logic (like in this example) ensures we
always return a value.

By using this function, we can make sure our integer columns have None types instead
of '-'. None tells Python that it’s null data, and to ignore it when analyzing it in com‐
parison with other numbers.

Because it seems like this type of cleaning and changing might be something we’ll
want to reuse, let’s take some of the code we have already written and make it into a

Exploring Your Data | 221

www.it-ebooks.info

http://www.it-ebooks.info/

more abstract and generic helper function. When we created our last cleaning func‐
tion, we made a new list, iterated over all of the rows, and then iterated over each
individual row to clean the data and return a new list for our agate table. Let’s see if
we can take those concepts and abstract them:

def get_new_array(old_array, function_to_clean):
 new_arr = []
 for row in old_array:
 cleaned_row = [function_to_clean(rv) for rv in row]
 new_arr.append(cleaned_row)
 return new_arr

cleaned_rows = get_new_array(country_rows, remove_bad_chars)

Defines our function with two arguments: the old data array, and the function to
clean the data.

Reuses our code with more abstract names. At the end of the function, returns
the new clean array.

Calls the function with the remove_bad_chars function and saves it in
cleaned_rows.

Now let’s retry our code to create the table:

In [10]: table = agate.Table(cleaned_rows, titles, types)

In [11]: table
Out[11]: <agate.table.Table at 0x7f9adc489990>

Hooray! We have a table variable holding a Table object. We can now look at our
data using the agate library functions. If you’re curious what the table looks like, have
a quick look by using the print_table method like so:

table.print_table(max_columns=7)

If you’ve been following along using IPython and you’d like to
ensure you have these variables in your next session, use %store. If
we want to save our table we can simply type %store table. In
our next IPython session we can restore table by typing %store -
r. This will be useful to “save” your work as you analyze your data.

Next, we’ll take a deeper look at our table using some built-in research tools.

222 | Chapter 9: Data Exploration and Analysis

www.it-ebooks.info

http://bit.ly/storemagic
http://www.it-ebooks.info/

Exploring Table Functions
The agate library gives us many functions to investigate our data. First, we’ll try out
the sorting methods. Let’s try ordering our table so we can see the most egregious
nations by ordering using the total percentage column. We will use the limit method
to see the top 10 offenders:

table.column_names

most_egregious = table.order_by('Total (%)', reverse=True).limit(10)

for r in most_egregious.rows:
 print r

Checks the column names so we know what column to use.

Chains the order_by and limit methods to create a new table. Because order_by
will order from least to greatest, we are using the reverse argument to say we’d
like to see the largest numbers first.

Using the new table’s rows attribute, iterates through the top 10 worst countries
for child labor.

Running the code returns a list of the 10 countries with the highest incidence of child
labor. In terms of percentages of children working, there are a high number of Afri‐
can countries at the top of the list. It’s our first interesting find! Let’s keep exploring.
To investigate which countries have the most girls working, we can use the order_by
and limit functions again. This time, we need to apply them to the Female percent‐
age column:

most_females = table.order_by('Female', reverse=True).limit(10)
for r in most_females.rows:
 print '{}: {}%'.format(r['Countries and areas'], r['Female'])

When first exploring your data, use the Python format function to
make your output easier to read rather than simply printing out
each row. This means you can remain focused on the data instead
of struggling to read it.

We see we have some None percentages. That isn’t what we expected! We can remove
those using the agate table’s where method, as shown in the following code. This
method is similar to a SQL WHERE statement or a Python if statement. where creates
another table including only the fitting rows:

Exploring Your Data | 223

www.it-ebooks.info

http://agate.readthedocs.org/en/latest/tutorial.html?#sorting-and-slicing
http://bit.ly/agate_table_limit
http://www.it-ebooks.info/

female_data = table.where(lambda r: r['Female'] is not None)
most_females = female_data.order_by('Female', reverse=True).limit(10)

for r in most_females.rows:
 print '{}: {}%'.format(r['Countries and areas'], r['Female'])

First, we created the female_data table, which uses the Python lambda function to
ensure each row has a value for the Female column. The where function takes the
Boolean value from the lambda function and separates out only the rows where it
returns True. Once we’ve separated out the rows with only female child labor values,
we use the same sorting, limiting, and formatting technique to see the countries with
the highest incidence of female child labor.

lambda
The Python lambda function allows us to write a one-line function and pass in one
variable. It’s incredibly useful for situations like the one we’re exploring in this section,
where we want to pass a singular value through a simple function.

When writing a lambda function, as in the example shown here, we want to first write
lambda and the variable we are using to represent the data we will pass to the func‐
tion. In our example, the variable was r. After the variable name, we place a colon (:).
This is similar to how we define functions with def and end the line with a colon.

After the colon, we give Python the logic we wish our lambda to compute so it will
return a value. In our example, we return a Boolean value telling us whether the
Female value of the row is not None. You don’t have to return a Boolean; lambda can
return any type (integers, strings, lists, etc.).

You can also use lambda functions with an if else clause, allowing you to return a
value based on some simple logic. Try this code in your Python interpreter:

(lambda x: 'Positive' if x >= 1 else 'Zero or Negative')(0)
(lambda x: 'Positive' if x >= 1 else 'Zero or Negative')(4)

Passes the lambda function via the first parentheses pair and the variable to use as
x in the second parentheses pair. This lambda tests if a value is equal to or greater
than one. If it is, it returns Positive. If it’s not, it returns Zero or Negative.

lambda functions are incredibly useful, but can also make your code less readable.
Make sure you follow the rules of good programming and use them only in obvious
and clear situations.

In reviewing the data, we see many of the same countries we saw in our overall per‐
centages. We’ve reviewed a bit of filtering and sorting, so let’s take a look at some of
the built-in statistical functions in the agate library. Say we wanted to find the aver‐

224 | Chapter 9: Data Exploration and Analysis

www.it-ebooks.info

http://www.it-ebooks.info/

age percentage of child labor in cities. To do so, we would pull the mean out of the
column Place of residence (%) Urban:

table.aggregate(agate.Mean('Place of residence (%) Urban'))

In this code snippet, we call the table’s aggregate method, using the agate.Mean()
statistical method and the column name to return the numerical mean of that col‐
umn. You can see other statistical aggregates you can use on columns in the agate
documentation.

When you run the code, you should receive a NullComputationWarning. As you can
probably guess from the name and our previous experience, this means we likely have
some null rows in the Place of residence (%) Urban column. We can again use the
where method to focus on the urban averages:

has_por = table.where(lambda r: r['Place of residence (%) Urban'] is not None)

has_por.aggregate(agate.Mean('Place of residence (%) Urban'))

You’ll notice you get the same value—this is because agate just does the same thing
(removing null columns and computing the average of what’s left) behind the scenes.
Let’s take a look at some of the other math we can do with the place of residence table.
We can see the minimum (Min), maximum (Max), and average (Mean) of the place of
residence columns.

Say we want to find one of the rows with more than 50% of rural child labor. The
agate library has a find method that uses a conditional statement to find the first
match. Let’s try writing out our question in code:

first_match = has_por.find(lambda x: x['Rural'] > 50)

first_match['Countries and areas']

The row returned is the first match, and we can see the name as we would in a nor‐
mal dictionary. One nice final step we’d like to do in our first exploration of the agate
library is to use the compute method alongside the agate.Rank() statistical method
to add a ranked column based on the values from another column.

Ranking your data based on one column is a great way to do a good
“gut check” when you’re comparing datasets.

To see the ranks of the worst offenders in terms of child labor percentages, we can use
the Total (%) column and rank the data accordingly. Before we join this data with
other datasets, we’ll want an easy-to-see rank column to help us compare the joined

Exploring Your Data | 225

www.it-ebooks.info

http://bit.ly/agate_stats
http://bit.ly/agate_stats
http://bit.ly/agate_rank
http://www.it-ebooks.info/

data. Because we want the countries with the highest percentages to appear at the top
of the list, we need to rank descending order by using the reverse=True argument:

ranked = table.compute([('Total Child Labor Rank',
 agate.Rank('Total (%)', reverse=True)),])

for row in ranked.order_by('Total (%)', reverse=True).limit(20).rows:
 print row['Total (%)'], row['Total Child Labor Rank']

If we wanted to calculate the rank in another way, we could create a column with the
inverse percentages. Instead of having the total percentage of children involved in
child labor in each country, we could have the percentage of children not involved in
child labor. This would then allow us to use the agate.Rank() method without
reverse:

def reverse_percent(row):
 return 100 - row['Total (%)']

ranked = table.compute([('Children not working (%)',
 agate.Formula(number_type, reverse_percent)),
])

ranked = ranked.compute([('Total Child Labor Rank',
 agate.Rank('Children not working (%)')),
])

for row in ranked.order_by('Total (%)', reverse=True).limit(20).rows:
 print row['Total (%)'], row['Total Child Labor Rank']

Creates a new function to calculate and return the inverse percentage if given a
row.

Uses the agate library’s compute method, which adds new columns when passed
a list. Each list item should be a tuple whose first item contains the column name
and whose second item computes the new column. Here, we are using the For
mula class, which also requires an agate type, alongside the function to create
that column value.

Creates the Total Child Labor Rank column with a proper ranking using our Chil‐
dren not working (%) column.

As you can see, compute is a great tool to calculate a new column based on another
column (or a few other columns). Now that we have our ranking, let’s see if we can
join some new data to our child labor dataset.

226 | Chapter 9: Data Exploration and Analysis

www.it-ebooks.info

http://bit.ly/agate_rank_descending
http://www.it-ebooks.info/

1 To take a look at some of those explorations, see the book’s repository.

Joining Numerous Datasets
When investigating datasets to join with our child labor data, we hit a lot of dead
ends. We tried to compare agricultural versus service economies using WorldBank
data, but didn’t find any good links. We did more reading and found some people
correlated child labor with HIV rates. We took a look at those datasets but did not
find a compelling overall trend. Along those same lines, we wondered if homicide
rates had an effect on child labor rates—but again, we found no clear link.1

After many such dead ends, an errant thought occurred while perusing the data and
reading some more articles. Would government corruption (or perceived government
corruption) affect child labor rates? When reading stories about child labor, there are
often links with antigoverment militias, schools, and industries. If a populace doesn’t
trust the government and must create non-state-sanctioned spaces, this could be a
reason to enlist all those willing to work and help (even children).

We located Transparency International’s Corruption Perceptions Index and decided
to compare this dataset with our UNICEF child labor data. First, we needed to import
the data into Python. Here is how to do that:

cpi_workbook = xlrd.open_workbook('corruption_perception_index.xls')
cpi_sheet = cpi_workbook.sheets()[0]

for r in range(cpi_sheet.nrows):
 print r, cpi_sheet.row_values(r)

cpi_title_rows = zip(cpi_sheet.row_values(1), cpi_sheet.row_values(2))
cpi_titles = [t[0] + ' ' + t[1] for t in cpi_title_rows]
cpi_titles = [t.strip() for t in cpi_titles]

cpi_rows = [cpi_sheet.row_values(r) for r in range(3, cpi_sheet.nrows)]

cpi_types = get_types(cpi_sheet.row(3))

We are again using xlrd to import the Excel data and reusing the code we’ve written
to parse our titles and get the data ready to import in our agate library. But before
you can run the last item, which calls a new function, get_types, we need to write
some code to help define types and create a table:

def get_types(example_row):
 types = []
 for v in example_row:
 value_type = ctype_text[v.ctype]
 if value_type == 'text':
 types.append(text_type)
 elif value_type == 'number':

Exploring Your Data | 227

www.it-ebooks.info

http://data.worldbank.org/
http://data.worldbank.org/
https://www.transparency.org/cpi2013/results
http://www.it-ebooks.info/

 types.append(number_type)
 elif value_type == 'xldate':
 types.append(date_type)
 else:
 types.append(text_type)
 return types

def get_table(new_arr, types, titles):
 try:
 table = agate.Table(new_arr, titles, types)
 return table
 except Exception as e:
 print e

We are using the same code we wrote earlier to create the function get_types, which
takes an example row and outputs a list of the types for our agate library. We’ve also
built a get_table function, which uses Python’s built-in exception handling.

Exception Handling
Throughout this book, we’ve encountered errors and dealt with them as they arose.
Now we have more experience and can begin anticipating potential errors and mak‐
ing conscious decisions about how to handle them.

Being specific with your code (especially with your exceptions) will allow you to com‐
municate what errors you anticipate in your code. It will also make sure any unfore‐
seen errors actually do raise exceptions and will end up in your error logs and halt
execution.

When we use try and except we tell Python, “Please try to execute this code. If you
run into an error, please stop running the previous section of code and run the code
in the except block”. Here’s an example:

try:
 1 / 0
except Exception:
 print 'oops!'

This example is a generic exception. Usually we would want to use a specific excep‐
tion we know the code might raise. For example, if we have code we know turns
strings into integers, we know we might run into a ValueError exception. We could
handle this as follows:

def str_to_int(x):

 try:

 return int(x)

 except ValueError:

 print 'Could not convert: %s' % x
 return x

228 | Chapter 9: Data Exploration and Analysis

www.it-ebooks.info

http://www.it-ebooks.info/

Begins the try block, which defines the code that might throw an error. The try
keyword is always followed by a colon and appears on its own line. The next line
or lines, a Python try block, are indented another four spaces.

Returns the value of the argument passed into the function as an integer. When
the arguments are values like 1 or 4.5, this will be no problem. If the value is - or
foo, this throws a ValueError.

Begins the except block, which defines the type of exception to catch. This line
also ends with a colon, and specifies we are awaiting a ValueError (so, this
except block will only catch ValueError exceptions). This block and the follow‐
ing lines of code execute only if the code in the try clause throws the error
defined with this line of code.

Prints lines to give us information about the exception. We can use this informa‐
tion if we need to update and change our code.

Generally, we want to build really concise and specific try and except blocks. This
makes our code readable, predictable, and specific.

You may be asking, why then do we have except Exception in the get_table func‐
tion we have written? This is a great question! We always want to be specific in our
code; however, when you are first experimenting with a library or a dataset, you
might not know what errors to anticipate.

To write specific exceptions, you need to predict what types of exceptions your code
might throw. There are built-in Python exception types, but also special library
exceptions that are unfamiliar to you. If you are using an API library, the authors
might write a RateExceededException indicating you are sending too many requests.
When a library is new to us, using an except Exception block with print or logging
will help us learn more about these errors.

When you write an except block, you can store the exception in a
variable e by adding as e at the end of your exception line (before
the colon). Because we are printing the e variable holding the
exception, we can learn more about the raised exceptions. Eventu‐
ally we will rewrite the except Exception block with more specific
exceptions, or a series of exception blocks, so our code runs
smoothly and predictably.

Now we have a get_table function to track our agate library exceptions and antici‐
pate ways to improve our code. We can use our new functions to get the perceived
corruption index data into our Python code. Try running this:

Exploring Your Data | 229

www.it-ebooks.info

http://www.it-ebooks.info/

cpi_types = get_types(cpi_sheet.row(3))

cpi_table = get_table(cpi_rows, cpi_types, cpi_titles)

Payoff! When you run the code, instead of the function breaking completely, our new
get_table function allows you to see the thrown errors. Duplicate titles probably
mean we have some bad titles in our title list. Check it out by running this:

print pci_titles

We can see the problem: we have two of the Country Rank columns. By looking at the
Excel data in the spreadsheet, we see we do indeed have duplicate columns. For expe‐
diency, we’re not going to worry about removing the duplicate data, but we do need
to handle the duplicate column names. We should add Duplicate to one of them.
Here’s how to do that:

cpi_titles[0] = cpi_titles[0] + ' Duplicate'

cpi_table = get_table(cpi_rows, cpi_types, cpi_titles)

We are replacing the first title with Country Rank Duplicate and trying again to make
our new pci_table:

cpi_rows = get_new_array(cpi_rows, float_to_str)

cpi_table = get_table(cpi_rows, cpi_types, cpi_titles)

Now we have our cpi_table without any errors. We can work on joining it with our
child labor data and see what connections we can make between the two datasets. In
the agate library, we have an easy-to-use method for joining tables: the join method.
This join method emulates SQL by joining two tables together based on one shared
key. Table 9-1 summarizes the different joins and their functionality.

Table 9-1. Table joins

Join type Function

Left outer join Preserves all rows from the left table (or first table in the join statement), binding on the shared key(s). If
there are rows with no match in the right (or second) table, these rows will hold null values.

Right outer join Uses the right table (second table in the join statement) as the table to begin matching keys. If there is no
match in the first (or left) table, these rows will hold null values.

Inner join Returns only the rows matching both tables using the shared key(s).

Full outer join Preserves all rows from both tables, still combining rows on the shared key(s) when they align properly.

If your data doesn’t exactly match up or have a one-for-one relationship and you are
using an outer join, you will have rows with null values. When the tables don’t match

230 | Chapter 9: Data Exploration and Analysis

www.it-ebooks.info

http://bit.ly/agate_table_join
http://www.it-ebooks.info/

up, an outer join keeps the data from the tables intact and replaces missing data with
null values. This is great if you’d like to keep the mismatched data because it’s essential
for your reporting.

If we wanted to join table_a and table_b but make sure we didn’t lose any table_a
data, we would write something like this:

joined_table = table_a.join(
 table_b, 'table_a_column_name', 'table_b_column_name')

In the resulting joined_table, we will have all of the table_a values that match with
the table_b values based on the column names we passed. If there are values in
table_a that don’t match table_b, we will keep those rows, but they will have null
values for the table_b columns. If there are values in table_b not matched in
table_a, they will be excluded from our new table. Choosing which table to place
first and specifying what type of join to use is important.

What we want, however, is not to have null values. Our questions revolve around how
the values correlate, so for that, we want to use an inner join. The agate library’s join
method allows us to pass inner=True, which will make an inner join retaining only
matching rows, with no null rows from the join.

We’ll try a join with our child labor data and our newly formed cpi_table. When
looking at our two tables, we can likely match them up on the names of the countries/
territories. In our cpi_table we have the column Country / Territory, and in the child
labor data we have the Countries and areas column. To join the two tables, run the
following line of code:

cpi_and_cl = cpi_table.join(ranked, 'Country / Territory',
 'Countries and areas', inner=True)

Our new table, cpi_and_cl, has our matching rows. We can see this by printing out a
few of the values and investigating the new joined columns, like so:

cpi_and_cl.column_names

for r in cpi_and_cl.order_by('CPI 2013 Score').limit(10).rows:
 print '{}: {} - {}%'.format(r['Country / Territory'],
 r['CPI 2013 Score'], r['Total (%)'])

Exploring Your Data | 231

www.it-ebooks.info

http://www.it-ebooks.info/

When you look at the column names, you can see we now have all of the columns
from both tables. A simple count of the data returns 93 rows. We don’t need all of the
data points (pci_table has 177 rows, ranked has 108), especially since we really want
to see the data correlated together. Did you notice anything else when you printed out
the new joined table after sorting by CPI score? We only took the top 10 rows, but
some interesting information is becoming clear:

Afghanistan: 8.0 - 10.3%
Somalia: 8.0 - 49.0%
Iraq: 16.0 - 4.7%
Yemen: 18.0 - 22.7%
Chad: 19.0 - 26.1%
Equatorial Guinea: 19.0 - 27.8%
Guinea-Bissau: 19.0 - 38.0%
Haiti: 19.0 - 24.4%
Cambodia: 20.0 - 18.3%
Burundi: 21.0 - 26.3%

With the exception of Iraq and Afghanistan, there are some pretty high child labor
rates among the countries with very low CPI scores (i.e., high perception of corrup‐
tion). Using some of the agate library’s built-in methods, we can investigate such cor‐
relations in our datasets.

Identifying Correlations
The agate library has some great tools for simple statistical analysis of your datasets.
These are a good first toolset—you can often start with the agate library tools and
then move on to more advanced statistical libraries, including pandas, numpy, and
scipy, as needed.

We want to determine whether perceived government corruption and child labor
rates are related. The first tool we’ll use is a simple Pearson’s correlation. agate is at
this point in time working on building this correlation into the agate-stats library.
Until then, you can correlate using numpy. Correlation coefficients (like Pearson’s) tell
us if data is related and whether one variable has any effect on another.

If you haven’t already installed numpy, you can do so by running pip install numpy.
Then, calculate the correlation between child labor rates and perceived government
corruption by running the following line of code:

import numpy

numpy.corrcoef(cpi_and_cl.columns['Total (%)'].values(),
 cpi_and_cl.columns['CPI 2013 Score'].values())[0, 1]

We first get an error which looks similar to the CastError we saw before. Because
numpy expects floats, not decimals, we need to convert the numbers back to floats. We
can use list comprehension for this:

232 | Chapter 9: Data Exploration and Analysis

www.it-ebooks.info

http://bit.ly/pearson-correlation
https://github.com/onyxfish/agate-stats
http://www.it-ebooks.info/

1 For more reading on median absolute deviations and standard deviations, check out a great writeup by Mat‐
thew Martin on why we still use standard deviations and Stephen Gorad’s academic paper on why and when
to use mean deviations.

numpy.corrcoef(
 [float(t) for t in cpi_and_cl.columns['Total (%)'].values()],
 [float(s) for s in cpi_and_cl.columns['CPI 2013 Score'].values()])[0, 1]

Our output shows a slight negative correlation:

-0.36024907120356736

A negative correlation means as one variable increases, the other
variable decreases. A positive correlation means the numbers
increase or decrease together. Pearson’s correlation values range
from –1 to 1, with 0 meaning no correlation and –1 and 1 meaning
very strong correlations.

Our value of –.36 indicates a weak correlation, but a correlation nevertheless. We can
use this knowledge to dive deeper into these datasets and what they mean.

Identifying Outliers
As your data analysis progresses, you will want to use some other statistical methods
to interpret your data. One starting point is to identify outliers.

Outliers occur when particular rows of data signficantly differ from
other parts of the dataset. Outliers usually tell us part of the story.
Sometimes removing them will show a significant trend. Other
times they tell a story in and of themselves.

With the agate library, finding outliers is easy. There are two different methods: one
uses standard deviations, and the other uses median absolute deviations. If you have
studied some statistics and would like to rely on one or the other, feel free to do so! If
not, analyzing both measures of variance and deviation in your datasets may unveil
different revelations.1

If you already know the distribution of your data, you can apply
the right ways to determine variance; but when you first explore
your data, try looking at more than one method to determine the
distribution and to learn more about how your data’s composition.

Exploring Your Data | 233

www.it-ebooks.info

http://bit.ly/why_std_deviation
http://bit.ly/mean_deviation_uses
http://bit.ly/mean_deviation_uses
http://www.it-ebooks.info/

We’re going to use the agate table’s standard deviation outlier method. This method
returns a table of values at least three deviations above or below the mean. Here is
how you can see the standard deviation outliers using your agate table.

If you are working with data in IPython and need to install a new
library, you can use IPython’s magic %autoreload to reload your
Python environment after installing the library in a different termi‐
nal. Try %load_ext autoreload and then %autoreload. Violà! You
have the new library without losing your progress.

First, you will need to install the agate-stats library by running pip install
agate-stats. The run the following code:

import agatestats
agatestats.patch()

std_dev_outliers = cpi_and_cl.stdev_outliers(
 'Total (%)', deviations=3, reject=False)

len(std_dev_outliers.rows)

std_dev_outliers = cpi_and_cl.stdev_outliers(
 'Total (%)', deviations=5, reject=False)

len(std_dev_outliers.rows)

Uses our child labor Total (%) column and the agate-stats stdev_outliers
method to see if our child labor data has easy-to-find standard deviation outliers.
We assign the output of this method to a new table, std_dev_outliers. We use
the argument reject=False to specify we want to see the outliers. If we set
reject to True, we would get just the values that are not outliers.

Checks how many rows of outliers were found. (The table has 94 rows total.)

Increases the number of deviations to find fewer outliers. (deviations=5).

We can see from the output that we don’t have a good grip on the distribution of the
data. When we used the Total (%) column to try to identify outliers using three stan‐
dard deviations, we got a table matching our current table. This is not what we want.
When we used five deviations, we did not see a change in the result. This is telling us
our data is not very regularly distributed. In order to figure out the actual variance in
our data, we are going to have to investigate further and determine if we need to
refine our data to a subset of the countries we are investigating.

We can test the varience of the Total (%) column using the mean absolute deviation:

234 | Chapter 9: Data Exploration and Analysis

www.it-ebooks.info

http://bit.ly/identify_outliers
http://www.it-ebooks.info/

mad = cpi_and_cl.mad_outliers('Total (%)')

for r in mad.rows:
 print r['Country / Territory'], r['Total (%)']

Interesting! We did indeed identify a much smaller table of outliers, but we got a
strange list of results:

Mongolia 10.4
India 11.8
Philippines 11.1

When we look at the list, we don’t see any of the top or bottom of our sample. This
means that our dataset likely doesn’t play by the normal statistical rules for identify‐
ing outliers.

Depending on your dataset and the distribution of data, these two
methods often do a great job of showing your data’s story in a
meaningful way. If they don’t, as in the case of our dataset, move on
and figure out what relationships and trends your data can tell you
about.

Once you’ve explored the distribution of your data and the trends that distribution
reveals, you’ll want to explore grouped relationships in your data. The following sec‐
tion explains how to group your data.

Creating Groupings
To further explore our dataset, we are going to create groupings and investigate their
relationships. The agate library provides several tools to create groupings and other
methods which allow us to aggregate those groupings and determine connections
between them. Earlier we had continental data intact for our child labor dataset. Let’s
try grouping the data geographically by continent and see if this reveals any connec‐
tions with our perceived corruption data or allows us to draw any conclusions.

First, we need to figure out how to get the continent data. In this book’s repository,
we have provided a .json file listing every country by continent. Using this data, we
can add a column showing each country’s continent allowing us to group by conti‐
nent. Here’s how we do that:

import json

country_json = json.loads(open('earth.json', 'rb').read())

country_dict = {}

for dct in country_json:
 country_dict[dct['name']] = dct['parent']

Exploring Your Data | 235

www.it-ebooks.info

https://github.com/jackiekazil/data-wrangling
http://www.it-ebooks.info/

def get_country(country_row):
 return country_dict.get(country_row['Country / Territory'].lower())

cpi_and_cl = cpi_and_cl.compute([('continent',
 agate.Formula(text_type, get_country)),
])

Uses the json library to load the .json file. If you take a look at the file, you’ll see
it’s a list of dictionaries.

Loops through the country_dict and adds the country as the key and the
continent as the value.

Creates a function that, when given a country row, returns the continent. It uses
the Python string’s lower method, which replaces capital letters with lowercase
ones. The .json file has all lowercase country names.

Creates a new column, continent, using the get_country function. We keep the
same table name.

Now we have continents with our country data. We should do a quick check to make
sure we didn’t miss anything. To do so, run this code:

for r in cpi_and_cl.rows:
 print r['Country / Territory'], r['continent']

Hmm, it looks like we have some missing data because we can see None types for
some of our countries:

Democratic Republic of the Congo None
...
Equatorial Guinea None
Guinea-Bissau None

We’d rather not lose this data, so let’s take a look at why these rows aren’t matching.
We want to only print out the lines that have no match. We can use agate to help us
find them by running this code:

no_continent = cpi_and_cl.where(lambda x: x['continent'] is None)

for r in no_continent.rows:
 print r['Country / Territory']

Your output should be:

Saint Lucia
Bosnia and Herzegovina
Sao Tome and Principe
Trinidad and Tobago

236 | Chapter 9: Data Exploration and Analysis

www.it-ebooks.info

http://www.it-ebooks.info/

Philippines
Timor-Leste
Democratic Republic of the Congo
Equatorial Guinea
Guinea-Bissau

There’s only a short list of countries with no continent data. We recommend just
cleaning up the earth.json data file, as this will make it easier to use the same data file
for joining this same data at a future time. If you instead use code to find the excep‐
tions and match them, it will be hard to repeat with new data and you’ll need to
change it every time.

In order to fix our matching in the .json file, we should figure out why the countries
were not found. Open up the earth.json file and find a few of the countries from our
no_continent table. For example:

 {
 "name": "equatorial Guinea",
 "parent": "africa"
 },
....
 {
 "name": "trinidad & tobago",
 "parent": "north america"
 },
...
 {
 "name": "democratic republic of congo",
 "parent": "africa"
 },

As we can see from looking at our .json file, there are some small differences prevent‐
ing us from properly finding the continents for these countries. This book’s reposi‐
tory also contains a file called earth-cleaned.json, which is the earth.json file with the
necessary changes made, such as adding the to the DRC entry and changing & to and
for several countries. We can now rerun our code from the beginning of this section
with the new file as our country_json data. You will need to start by rejoining the
table so you don’t have duplicate columns (using the same code we used earlier to
join the two tables). After you’ve rerun those two pieces of code you should have no
unmatched countries.

Let’s try to group our now-complete continent data by contintent and see what we
find. The following code does just that:

grp_by_cont = cpi_and_cl.group_by('continent')

print grp_by_cont

for cont, table in grp_by_cont.items():
 print cont, len(table.rows)

Exploring Your Data | 237

www.it-ebooks.info

http://www.it-ebooks.info/

Uses the agate library’s group_by method, which returns a dictionary where the
keys are the continent names and the values are new tables containing rows for
that continent.

Iterates over the dictionary items to see how many rows are in each table. We are
assigning the key/value pairs from items to the cont and table variables, so cont
represents the key or continent name and table represents the value or table of
matching rows.

Prints our data to review our groupings. We are using Python’s len function to
count the number of rows we have for each table.

When we run that code, we get the following (note you may have a different order):

north america 12
europe 12
south america 10
africa 41
asia 19

We can see a numerical concentration in Africa and Asia compared to the other con‐
tinents. This interests us, but group_by doesn’t easily give us access to aggregate data.
If we want to start aggregating our data and creating summed columns, we should
take a look at the aggregation methods in the agate library.

We notice the agate table’s aggregate method, which takes a grouped table and a
series of aggregate operations (like a sum) to calculate new columns based on the
grouping.

After looking at the aggregate documentation, we are most interested in how the
continents compare across perceived corruption and child labor. We want to use
some statistical methods to take a look at the group as a whole (using Median and
Mean) but also to identify the most egregious (Min for the CPI score and Max for the
total child labor percentage). This should give us some nice comparisons:

agg = grp_by_cont.aggregate([('cl_mean', agate.Mean('Total (%)')),
 ('cl_max', agate.Max('Total (%)')),
 ('cpi_median', agate.Median('CPI 2013 Score')),
 ('cpi_min', agate.Min('CPI 2013 Score'))])

agg.print_table()

Calls the aggregate method on our grouped table and passes a list containing
tuples of new aggregate column names and agate aggregation methods (which
utilize column names to compute the values for the new columns). We want the
mean and max of the child labor percentage column and the median and min of

238 | Chapter 9: Data Exploration and Analysis

www.it-ebooks.info

http://bit.ly/aggregate_stats
http://www.it-ebooks.info/

the corruption perception score. You can use different aggregate methods
depending on your questions and data.

Prints the new table so we can visually compare our data.

When you run that code, you should see this result:

|----------------+-----------------------------+--------+------------+----------|
| continent | cl_mean | cl_max | cpi_median | cpi_min |
|----------------+-----------------------------+--------+------------+----------|
south america	12,710000000000000000000000	33,5	36,0	24
north america	10,333333333333333333333333	25,8	34,5	19
africa	22,348780487804878048780487	49,0	30,0	8
asia	9,589473684210526315789473	33,9	30,0	8
europe	5,625000000000000000000000	18,4	42,0	25
----------------+-----------------------------+--------+------------+----------				

If we wanted to take a closer look at some other charts surrounding our data, we
could use the agate table’s print_bars method, which takes a label column (here,
continent) and a data column (here, cl_max) to chart the child labor maximum in
our iPython session. Its output is as follows:

In [23]: agg.print_bars('continent', 'cl_max')

continent cl_max
south america 33,5 ▓░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░
north america 25,8 ▓░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░
africa 49,0 ▓░░░
asia 33,9 ▓░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░
europe 18,4 ▓░░░░░░░░░░░░░░░░░░░░
 +----------+-----------------+--------------+-------------+
 0,0 12,5 25,0 37,5 50,0

Now we have several easy-to-compare outputs of our continent data, and the picture
is showing some trends. We notice Africa has the highest mean of the total child labor
percentage column. It also has the highest maximum value, followed by Asia and
South America. The comparatively low means for Asia and South America suggest
that there are one or more outliers in these regions.

We see a fairly even median across our perceived corruption data, with Europe scor‐
ing the highest (i.e., least amount of corruption perceived). However, when we look at
the minimums (or worst perceived corruption scores), we can see that Africa and
Asia again represent the “worst” scores.

This shows there are several stories we can investigate further in these datasets. We
were able to see a link (albeit weak) between perceived corruption and child labor. We
were also able to investigate which countries and which continents are the worst
offenders for child labor and perceived corruption. We can see Africa has a high rate
of child labor and fairly high perceived corruption. We know in Asia and South

Exploring Your Data | 239

www.it-ebooks.info

http://www.it-ebooks.info/

America one or two countries might stand out in terms of child labor compared to
their neighbors.

Our aggregation and exploration have only taken us so far. We can continue to use
the tables we’ve created to tell more stories and investigate further.

Further Exploration
There are some other powerful features in the agate library, and some other interest‐
ing statistical libraries that you can use to experiment with your own datasets.

Depending on your data and what your questions are, you may
find some of these features and libraries more useful than others,
but we strongly encourage you to find ways to experiment with a
variety of tools. It will deepen your understanding of Python and
data analysis libraries as well as your data analysis itself.

The agate-stats library has some interesting statistical methods we haven’t yet
investigated. You can keep track of the new releases and functionality on GitHub.

In addition, we recommend continuing to play around using numpy. You can use
numpy to calculate percentiles. You can also expand into using the scipy library and
play around with the z score statistical methods for determining outliers.

If you have time-sensitive data, numpy has the ability to calculate column-by-column
changes between data to investigate changes over time. agate can also compute
change columns with time-sensitive data. Don’t forget to use the date type when
forming your date columns, as this will enable you to do some interesting date analy‐
sis (such as percent change over time or time series mapping).

If you want to investigate with even more statistics, install the latimes-calculate
library. This library has many statistical methods as well as some interesting geospa‐
tial analysis tools. If you have access to geospatial data, this library can provide you
with some valuable tools to better understand, map, and analyze your data.

If you’d like to take your statistics one step further, we highly recommend Wes
McKinney’s book Python for Data Analysis (O’Reilly). It introduces you to some of
the more robust Python data analysis libraries, including pandas, numpy, and the
scipy stack.

Take time to play around and explore your data with some of the methods and les‐
sons we’ve already reviewed. We will now move on to analyzing our data further and
determining some ways we can draw conclusions and share our knowledge.

240 | Chapter 9: Data Exploration and Analysis

www.it-ebooks.info

https://github.com/onyxfish/agate-stats
http://bit.ly/numpy_percentile
http://bit.ly/numpy_percentile
http://bit.ly/scipy_zscore
http://bit.ly/numpy_diff
http://bit.ly/numpy_diff
http://bit.ly/computing_new_columns
http://bit.ly/computing_new_columns
http://bit.ly/latimes-calculate
http://bit.ly/latimes-calculate
http://shop.oreilly.com/product/0636920023784.do
http://www.it-ebooks.info/

Analyzing Your Data
Once you’ve played with a few more examples from the agate library’s Cookbook (an
assortment of different methods and tools to use for investigation), you probably
have enough familiarity with your data to begin your analysis.

What is the difference between data exploration and analysis?
When we analyze data, we ask questions and attempt to answer
them using the data at our disposal. We might combine and group
datasets to create a statistically valid sampling. With exploration,
we simply want to investigate trends and attributes of our datasets
without trying to answer specific questions or come to conclusions.

With some basic analysis, we can attempt to determine the answers to the questions
we uncovered in our exploration:

• Why do there seem to be higher frequencies of child labor in Africa?
• What child labor outliers exist in Asia and South America?
• How do perceived corruption and child labor tie together?

For your dataset, you will have different questions, but try to follow our examples and
find trends you’d like to investigate. Any statistical outliers or aggregation tendencies
can point you to interesting questions to research.

To us, the most interesting question for our particular dataset concerns the connec‐
tion between perceived corruption and child labor in Africa. Does government cor‐
ruption, or the perception of government corruption, affect how communities are
able to prohibit child labor?

Depending on the datasets you are using and what your data explo‐
ration has shown, you may have a variety of questions you are
interested in pursuing. Try to focus on a specific question and
answer it using your analysis. Repeat this for as many specific ques‐
tions as you’d like. Focusing will help you determine good answers
and keep your analysis clear.

Answering this question will require more investigation and more datasets. We might
want to read more articles to see what’s been written on the topic. We might also want
to call and interview experts in the field. Finally, we might want to focus and choose a
particular region in Africa or series of countries to better evaluate the story of child
labor. The next section explains how to do that.

Analyzing Your Data | 241

www.it-ebooks.info

http://agate.readthedocs.org/en/latest/cookbook.html
http://www.it-ebooks.info/

Separating and Focusing Your Data
For further analysis, we first need to separate out our data for African nations and
investigate this subset of data more fully. We already know a lot of ways to filter with
our agate library, so let’s start there. Here’s how to separate out the African data from
the other data:

africa_cpi_cl = cpi_and_cl.where(lambda x: x['continent'] == 'africa')

for r in africa_cpi_cl.order_by('Total (%)', reverse=True).rows:
 print "{}: {}% - {}".format(r['Country / Territory'], r['Total (%)'],
 r['CPI 2013 Score'])

import numpy
print numpy.corrcoef(
 [float(t) for t in africa_cpi_cl.columns['Total (%)'].values()],
 [float(c) for c in africa_cpi_cl.columns['CPI 2013 Score'].values()])[0, 1]

africa_cpi_cl = africa_cpi_cl.compute([('Africa Child Labor Rank',
 agate.Rank('Total (%)', reverse=True)),
])

africa_cpi_cl = africa_cpi_cl.compute([('Africa CPI Rank',
 agate.Rank('CPI 2013 Score')),
])

Uses the where table method to filter only rows where the continent is africa.

Prints the rows with some formatting so we can view our data for a “gut check.”
We want to make sure we have only African countries and we can see our total
child labor percentages and CPI scores.

Shows whether the Pearson’s correlation has changed after separating out the
most interesting data.

Adds a new ranking to show how the countries within our subset of data rank up
just against one another.

With this subset of the data, we calculated a new Pearson’s correlation:

-0.404145695171

Our Pearson’s correlation decreased, showing a slightly stronger relationship between
child labor and perceived corruption in our African data than in the global data.

Now let’s see if we can identify good stories and find data points we’d like to investi‐
gate. We are going to find the mean values for perceived corruption and child labor
percentages and show the countries with the highest child labor and worst perceived
corruption (i.e., where the values are worse than the mean). Here’s how to do that:

242 | Chapter 9: Data Exploration and Analysis

www.it-ebooks.info

http://www.it-ebooks.info/

cl_mean = africa_cpi_cl.aggregate(agate.Mean('Total (%)'))
cpi_mean = africa_cpi_cl.aggregate(agate.Mean('CPI 2013 Score'))

def highest_rates(row):
 if row['Total (%)'] > cl_mean and row['CPI 2013 Score'] < cpi_mean:
 return True
 return False

highest_cpi_cl = africa_cpi_cl.where(lambda x: highest_rates(x))

for r in highest_cpi_cl.rows:
 print "{}: {}% - {}".format(r['Country / Territory'], r['Total (%)'],
 r['CPI 2013 Score'])

Pulls out the column averages we are most interested in: corruption score and
child labor percentages.

Creates a function to identify countries with high child labor rates and low CPI
scores (i.e., high corruption).

Returns True or False from our highest_rates function, which selects a row.
This lambda asks whether the country has higher than average child labor rates
and perceived corruption.

When we run the code we see some interesting output. Of particular interest are these
rows:

Chad: 26.1% - 19.0
Equatorial Guinea: 27.8% - 19.0
Guinea-Bissau: 38.0% - 19.0
Somalia: 49.0% - 8.0

Our output shows some data in the “middle” that is not too far off the mean, but then
these worst offenders with lower corruption scores and higher child labor
percentages. Because we are interested in why there are high child labor rates and
how corruption affects child labor, these would be our best case studies.

As we continue our research, we want to identify what is happening in these specific
countries. Are there films or documentaries related to young people or child labor in
these countries? Are there articles or books written on the topic? Are there experts or
researchers we can contact?

When we look more deeply into these countries, we see some stark realities: child
trafficking, sexual exploitation, maliciously acting religious groups, street and domes‐
tic labor. Are these realities connected to disenfranchisement? To a public who can‐
not trust the government? Can we trace commonalities among these countries and
their neighbors? Can we determine elements or actors helping ease the problems?

Analyzing Your Data | 243

www.it-ebooks.info

http://www.it-ebooks.info/

It would be interesting to look into the effects of political and generational changes
over time. We could peruse the backlog of UNICEF data or focus in one country and
utilize UNICEF’s Multiple Indicator Cluster Survey data to understand changes
through the decades.

For your own dataset, you need to determine what possibilities you have for future
exploration. Can you find more data for your investigation? Are there people you can
interview or trends you can identify over a long period of time? Are there books,
movies, or articles on the topic that can shed more light? Your analysis is the begin‐
ning of future research.

What Is Your Data Saying?
Now that we’ve explored and analyzed our data, we can begin figuring out what the
data is telling us. As we experienced when we first started looking at our child labor
data, sometimes your data has no connections, it tells no story, and it’s not correlated.
That’s OK to find out!

Sometimes finding no correlation tells you to keep researching to
find actual existing connections. Sometimes not finding a connec‐
tion is a revelation in and of itself.

In data analysis, you search for trends and patterns. Most of the time, as we saw with
our child labor data, analysis is a starting poing for further research. As much as your
numbers tell a story, adding a human voice or another angle is a great way to expand
on the connections and questions revealed by your analysis.

If you find some connections, even weak ones, you can dig deeper. Those connec‐
tions lead to better questions and more focused research. As we saw with our child
labor data, the more focused we became in our research, the easier it was to see con‐
nections. It’s great to start broad, but important to finish with a more refined view.

Drawing Conclusions
Once you’ve analyzed your data and understand the connections, you can start deter‐
mining what you can conclude. It’s essential you have a real understanding of your
datasets and the topic, so you can have a firm backing for your ideas. With your data
analysis, interviews, and research completed, your conclusions are formed, and you
simply need to determine how to share them with the world.

244 | Chapter 9: Data Exploration and Analysis

www.it-ebooks.info

http://bit.ly/unicef_mics
http://www.it-ebooks.info/

If you have trouble finding a definitive conclusion, it’s OK to
include open questions in your findings. Some of the biggest sto‐
ries start with just a few simple questions.

If you can cast light on the topic and point out the need for more documentation,
research, and action in order to draw complete conclusions, that is an important mes‐
sage itself. As we found with our investigation, it’s hard to say if government corrup‐
tion causes high child labor rates, but we can say there is a weak correlation between
the two, and we’d like to research and analyze the way they are linked—particularly in
certain African nations.

Documenting Your Conclusions
Once you’ve found some conclusions and more questions you’d like to research, you
should begin documenting your work. As part of your documentation and final pre‐
sentation, you should be clear about what sources you used and how many data
points you analyzed. In our subset, we investigated only ~90 data points, but they
represented the segment we wanted to study.

You may find the dataset you focus on is smaller than anticipated. As long as you are
clear about your methods and the reasons for the smaller subset, you will not lead
your audience or reporting astray. In the next chapter, we’ll dive deeper into reporting
our findings, documenting our thoughts and processes as we share our conclusions
with the world.

Summary
In this chapter, we explored and analyzed our datasets using some new Python libra‐
ries and techniques. You were able to import datasets, join them, group them, and
create new datasets based on the findings.

You can now utilize statistical methods to find outliers and measure correlation. You
can determine solid, answerable questions to investigate by separating out interesting
groupings and diving deeper into your exploration. If you’ve been using IPython and
%store to save your variables, we will be interacting more with them in the next
chapter.

You should now feel comfortable:

• Evaluating your data using the agate library
• Determining what, if anything, is significant in your data
• Finding holes in your data or parts of the data you’d need to further investigate to

come to conclusions

Summary | 245

www.it-ebooks.info

http://www.it-ebooks.info/

• Challenging your assumptions by analyzing and exploring your data

The new concepts and libraries we’ve covered are summarized in Table 9-2.

Table 9-2. New Python and programming concepts and libraries

Concept/Library Purpose

agate library Data analysis made easy with the ability to easily read in data from a CSV, make tables for
analysis, run basic statistical functions, and apply filters to gain insight into your dataset.

xlrd ctype and
ctype_text objects

Allow you to easily see what cell type your data is in when using xlrd to analyze Excel data.

isinstance function Tests the type of a Python object. Returns a Boolean value if the types match.

lambda functions One-line functions in Python, great for simple filtering or parsing of your dataset. Be careful not to
write a lambda that can’t be easily read and understood. If it’s too complex, write a small
function instead.

Joins (inner, outer, left,
right)

Allow you to join two different datasets on one or more matching fields. Depending on how you
join your data (inner/outer and left/right), you will get different datasets. Take time to think about
what join fits your needs.

Exception handling Enables you to anticipate and manage Python exceptions with code. It’s always better to be
specific and explicit, so you don’t disguise bugs with overly general exception catches.

numpy coerrcoef Uses statistical models like Pearson’s correlation to determine whether two parts of a dataset are
related.

agate mad_outli

ers and stdev_out
liers

Use statistical models and tools like standard deviations or mean average deviations to determine
whether your dataset has specific outliers or data that “doesn’t fit.”

agate group_by

and aggregate
Group your dataset on a particular attribute and run aggregation analysis to see if there are
notable differences (or similarities) across groupings.

In the next chapter, you will learn how to use visualizations and storytelling tools to
share your conclusions on the Web and in numerous other formats.

246 | Chapter 9: Data Exploration and Analysis

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10

Presenting Your Data

You’ve learned how to analyze your data, and now you’d like to present it. Depending
on the audience you have in mind, the presentation can differ greatly. We’ll learn
about all different types in this chapter: from simple presentations you can make on
your computer to interactive website presentations.

Depending on what you’d like to present, your visualization, with charts, maps, or
graphs, might be a major part of the story you are trying to tell. We will cover how to
get your own site up and running to share your findings. We’ll also show you how to
share a Jupyter notebook, where folks can see your code along with the charts,
graphs, and conclusions.

To begin, we’ll explore how to think about your audience and begin telling the stories
you have found via your data analysis.

Avoiding Storytelling Pitfalls
Storytelling is not an easy job. Depending on your topic, you might have a difficult
time determining solid conclusions from your data. You might encounter inconsis‐
tent or inconclusive data. This is OK! We recommend continuing to explore—maybe
the story is in the disparate examples you find in your datasets.

Some of the difficulties you face in storytelling will be due to per‐
sonal biases you bring to your data analysis. As economist and
journalist Allison Schranger aptly discusses in her article “The
Problem with Data Journalism”, we bring biases to our analyses
that we can’t adequately counter. Her sage advice is to admit those
biases and attempt to get to know your data to such a degree you
cannot misconstrue it for the purpose of your story.

247

www.it-ebooks.info

http://bit.ly/data_journalism_problems
http://bit.ly/data_journalism_problems
http://www.it-ebooks.info/

Don’t presume the story you want to tell and the data are congruous. Attempt to learn
the data first, then tell the story you learn from the data. Don’t spend too much time
manipulating the data. If you have to alter the data too much (by standardizing, nor‐
malizing, and removing outliers), you probably should find another story or different
data.

With that in mind, storytelling is a powerful part of becoming an area expert. With
the knowledge you have gained by exploring the data you have, you can help illumi‐
nate new topics and ideas. With the humility you learn by understanding your biases,
the story will be effective and enlightening.

How Will You Tell the Story?
Deciding what story you’d like to tell is just as important as deciding how to tell it.
You can use charts, graphs, timelines, maps, videos, words, and interactives. You can
publish it online or present it at a meeting or conference. You can upload it to a video
sharing site. Whatever you choose, make sure the way you are telling the story enhan‐
ces your findings. There is nothing more disheartening than seeing a presentation so
poor it actually nullifies the story it attempts to tell.

In the next few sections, we will evaluate how your audience, your story, and the plat‐
forms available affect your presentation choices. We recommend reading through all
of them, even if you already have an idea of how you’d like to present your findings.
This will give you a greater understanding of what’s available even if you stick with
your initial choice. A combination of several formats can be the best option for those
trying to reach a larger audience.

Determining how often you plan to update the data in the future is another part of
how you tell the story. Is this an ongoing series? Can your audience expect to hear
more about this story soon, or in an annual report? Can you tell them clearly when
and how it will be updated? Keeping an audience waiting is only a good idea if you
can clarify their expectations.

Know Your Audience
Who you are writing for is almost as important as what you are writing. By identify‐
ing your target audience, you can determine what they already know about a topic,
what is of most interest to them, and how they learn best. Missing the mark in terms
of communicating with your audience creates a story without an interested party.

If your reporting or presentation is part of your job, it should be fairly easy to deter‐
mine your audience. Whether it’s a small group at work, an executive team, or a daily
or annual publication, you know exactly who will be reading your reporting.

248 | Chapter 10: Presenting Your Data

www.it-ebooks.info

http://www.it-ebooks.info/

If you are interested in publishing your data for a wider audience,
you should research what has already been written and who was
interested in learning more. Becoming familiar with the corpus of
work in your target field will help you determine whether there’s an
existing or new audience to whom you can speak.

If you’re not sure which audience to target, one good strategy is to approach different
people you know who have markedly different levels of interest in your chosen topic,
say, a parent or mentor, a peer, and a mentee (in terms of exposure to the world and
your topic). Is one part of the story more interesting to different people, depending
on their level of knowledge about the topic? Do different questions come up depend‐
ing on the age and experience of your audience? Observe their questions and reac‐
tions once you explain your topic and amend your target audience interpretation
based on these observations.

Once you’ve determined your target audience, you can find out more about them.
Use the tips in the following sidebar to help refine how you might tell the story
depending on your audience.

Talking to Your Audience
When thinking about how to tell your story to your audience, it’s important to
address how they learn, and understand the world, and your topic in particular. These
questions should guide your storytelling to best communicate your findings to your
target audience:

• How does your audience learn about new things? Online? Word of mouth? In a
publication?

• How much prior knowledge does your audience have on the topic? Are there
words and ideas that may be unfamiliar?

• Can your audience explore data on their own?
• How much time and attention does your audience have for the story?
• How engaged will your audience be in speaking with you and one another about

the story?
• Will your audience want to be alerted and updated if new information is

released?

These are just some of many questions you can ask yourself to determine who your
real audience is and how they might best consume your story. Use these questions as
an initial prompt, and let them lead you to more questions and realizations about
how to share your findings.

Avoiding Storytelling Pitfalls | 249

www.it-ebooks.info

http://www.it-ebooks.info/

Once you’ve found your audience and taken some time to begin your storytelling,
you can start investigating ways to tell your data’s story through visualization.

Visualizing Your Data
When working with data, it’s likely you’ll want to use some kind of visualization to
tell your story. Depending on what your story is, your visualization might be a chart,
a graph, or a timeline. Regardless of how you present your data, the first step is to
determine what visual data is both useful and relevant.

With visual storytelling, it’s incredibly important to determine how to show your
findings. As Alberto Cairo writes in his blog post on data visualizations, if you don’t
show all the relevant data, you might leave the audience questioning your methods
and findings.

Similar to our documentation detailing our data analysis and meth‐
odology, we need to document and defend our visual exploration
and representation of the data and ensure we are not omitting
important parts of the story.

In this section, we will explore how to use charts, time series and timelines, maps,
mixed media, words, images, and video to share findings. Depending on the audience
you have in mind, there might be a mixture of these types that are relevant to your
story. Each of these formats has its pros and cons, and we’ll review these as we
explore.

Charts
Charts are a great way to share numeric data, especially when comparing divergent
datasets or different groupings. If you have a clear trend in your data or your data
shows specific outliers, charts help communicate those observations to your audi‐
ence.

You can use a stacked or bar chart to show a large number of figures alongside one
another. For example, in his Washington Post story on infant mortality, Christopher
Ingraham uses a bar chart to compare countries alongside one another.

To show trends over time, one usually employs a line chart. Ingraham also uses a line
chart to compare infant mortality rates at different ages. The bar graph helps us see
that the United States lags behind most other countries in infant care. The line chart
allows us to compare mortality rates in different countries over time, giving us
another way to observe the data.

250 | Chapter 10: Presenting Your Data

www.it-ebooks.info

http://www.thefunctionalart.com/2014/08/to-make-visualizations-that-are.html
http://www.washingtonpost.com/blogs/wonkblog/wp/2014/09/29/our-infant-mortality-rate-is-a-national-embarrassment/
http://www.it-ebooks.info/

You will note the author chose to only show a few countries on the line chart rather
than all of the countries represented in the bar graph. Why do you think he made this
decision? It’s possible he reviewed the data and found including more countries made
the chart hard to read.

These are the types of decisions you will need to make when visualizing your find‐
ings. In order to better determine whether a chart is right for you and what kind of
chart is most useful, first define what you’d like to show with your charts. The easy-
to-use flowchart available on the Extreme Presentation blog is one place to start when
first thinking about these issues. Juice Labs has built an interactive chart selector
showing some of the same concepts.

Different charts have their own strengths and weaknesses. If you’d
like to show relationships, you can use a scatter plot, bubble chart,
or line chart, all of which can show data correlations. Bar charts
better compare many subjects. If you want to show composition or
factors, you can make a stacked chart. To show distribution, you
can use a time series plot or histogram.

Let’s think about the data we’ve investigated so far and use some built-in agate fea‐
tures to chart the data.

Charting with matplotlib

One of the main Python charting and imaging libraries is matplotlib, which helps
chart and plot datasets. It’s a great way to generate simple charts, and the more parts
of the plotting library you learn, the more advanced your graphs and charts will be.
First, we need to install it by running pip install matplotlib.

Let’s show our perceived corruption scores compared to the child labor percentages.
Here’s how we’d do that:

import matplotlib.pyplot as plt

plt.plot(africa_cpi_cl.columns['CPI 2013 Score'],
 africa_cpi_cl.columns['Total (%)'])

plt.xlabel('CPI Score - 2013')
plt.ylabel('Child Labor Percentage')
plt.title('CPI & Child Labor Correlation')

plt.show()

Uses pylab’s plot method to pass the x and y label data. The first variable passed
is the x-axis and the second variable is the y-axis. This creates a Python chart
plotting those two datasets.

Visualizing Your Data | 251

www.it-ebooks.info

http://bit.ly/abela-choosing
http://labs.juiceanalytics.com/chartchooser
http://www.it-ebooks.info/

1 If a chart doesn’t show up for you, follow the instructions on Stack Overflow to identify where your matplot
lib settings are and to set your backend to one of the defaults (Qt4Agg for Mac/Linux or GTKAgg for Win‐
dows). For Windows, you may need to also pip install pygtk.

Calls the xlabel and ylabel methods to label our chart axes.

Calls the title method to title our chart.

Calls the show method to draw the chart. Everything we set up with our chart
before we call show will be displayed in the system’s default image program (like
Preview or Windows Photo Viewer). Our title, axis labels, and any other
attributes we set via the matplotlib library will be displayed in the chart.

And voilà! Python renders the chart shown in Figure 10-1.1

Figure 10-1. Child labor and CPI chart

We can indeed see the overall downward trend, but we can also see the data in the
middle does not follow a particular trend. In fact, the data varies greatly, telling us

252 | Chapter 10: Presenting Your Data

www.it-ebooks.info

http://bit.ly/matplot_lib_settings
http://www.it-ebooks.info/

there is not a connection between child labor and perceived corruption for all of the
countries, but only for some of them.

Let’s make the same chart using only the worst offenders. We already separated out
these worst offenders, in “Separating and Focusing Your Data” on page 242. When we
run the previous code again with our highest_cpi_cl table, we see the chart shown
in Figure 10-2.

Figure 10-2. Highest child labor chart

Now we can see a clear downward trend for the worst offenders, followed by some
anomalies as the child labor rates and perceived corruption scores decrease.

There are many chart types available from pylab, including histograms, scatter
charts, bar graphs, and pie charts. We strongly recommend taking a look at matplot‐
lib.org’s introduction to pyplot, covering how to change different aspects of your
charts (color, labels, size) and use multiple figures, subplots, and more chart types.

Charting your data can give you a good idea of anomalies or outli‐
ers within your dataset. Using the different charting methods avail‐
able to you in the Python charting libraries can help you research
your data’s story and interrelatedness.

Visualizing Your Data | 253

www.it-ebooks.info

http://bit.ly/pyplot_tutorial
http://bit.ly/pyplot_tutorial
http://www.it-ebooks.info/

The more you play with the library’s charting toolset, the easier it will be to under‐
stand which charts work best with your dataset.

Charting with Bokeh
Bokeh is a Python charting library with fairly simple commands for more complex
chart types. If you want to create a stacked chart, scatter chart, or time series, we rec‐
ommend playing around with Bokeh and seeing if it’s right for you. Let’s try making a
scatter chart with Bokeh for our CPI and child labor data on a country-by-country
basis. Install Bokeh by running this command:

pip install bokeh

Then build a scatter chart with some simple commands using the agate table:

from bokeh.plotting import figure, show, output_file

def scatter_point(chart, x, y, marker_type):
 chart.scatter(x, y, marker=marker_type, line_color="#6666ee",
 fill_color="#ee6666", fill_alpha=0.7, size=10)

chart = figure(title="Perceived Corruption and Child Labor in Africa")
output_file("scatter_plot.html")
for row in africa_cpi_cl.rows:
 scatter_point(chart, float(row['CPI 2013 Score']),
 float(row['Total (%)']), 'circle')
show(chart)

Defines a function, scatter_point, which takes a chart, x-axis and y-axis values,
and marker type (circle, square, rectangle) and adds the point to the chart.

The chart’s scatter method takes two required arguments (x- and y-axis) and a
variety of keyword arguments to style those points (including the color, opacity,
and size). This line passes some line colors and fill colors as well as size and opac‐
ity settings.

Creates the chart using the figure function and passes a title.

Defines what file to output using the output_file function. This will create the
file scatter_plot.html in the folder where you run the code.

For each row, adds a point using the CPI score as the x-axis and the child labor
percentage as the y-axis.

Shows the chart in a browser window.

254 | Chapter 10: Presenting Your Data

www.it-ebooks.info

http://bokeh.pydata.org/
http://www.it-ebooks.info/

When you run the code, it opens a tab in your browser containing the chart
(Figure 10-3).

Figure 10-3. CPI and child labor scatter plot

That’s pretty nice, but we can’t see much about what those dots mean. Bokeh can add
interactive elements in our charts. Let’s try adding some:

from bokeh.plotting import ColumnDataSource, figure, show, output_file
from bokeh.models import HoverTool

TOOLS = "pan,reset,hover"

def scatter_point(chart, x, y, source, marker_type):
 chart.scatter(x, y, source=source,
 marker=marker_type, line_color="#6666ee",
 fill_color="#ee6666", fill_alpha=0.7, size=10)

chart = figure(title="Perceived Corruption and Child Labor in Africa",
 tools=TOOLS)

Visualizing Your Data | 255

www.it-ebooks.info

http://www.it-ebooks.info/

output_file("scatter_int_plot.html")
for row in africa_cpi_cl.rows:
 column_source = ColumnDataSource(
 data={'country': [row['Country / Territory']]})
 scatter_point(chart, float(row['CPI 2013 Score']),
 float(row['Total (%)']), column_source, 'circle')

hover = chart.select(dict(type=HoverTool))

hover.tooltips = [
 ("Country", "@country"),
 ("CPI Score", "$x"),
 ("Child Labor (%)", "$y"),
]

show(chart)

Imports the main libraries we have been using and adds the ColumnDataSource
and HoverTool classes.

Defines the tools you’d like to use for the final product. This code adds hover so
we can use the hover methods.

Adds source to the required variables. This will hold our country name
information.

Passes the TOOLS variable to our figure upon initialization.

column_source now holds a data source dictionary with the country name. This
line passes the name as a list because the values must be iterable objects.

Selects the HoverTool object from the chart.

Uses the tooltips method of the hover object to show different data attributes.
@country selects the data passed via the column source, whereas $x and $y selects
the x and y points on the chart.

Now your chart should look like Figure 10-4.

256 | Chapter 10: Presenting Your Data

www.it-ebooks.info

http://bit.ly/specifying_tools
http://www.it-ebooks.info/

Figure 10-4. CPI and child labor interactive scatter plot

As you move your cursor over each point, the data for x and y
change. To improve the chart, try adding the exact values for our
two data points to the column_source object by entering new keys
and values into the data dictionary.

Bokeh has a great gallery of examples and code available to help you get started. We
recommend taking time with your charts and giving Bokeh a try.

Time-Related Data
Time series and timeline data help represent your findings over time. Time series
charts show data changing over time (usually as a line chart, bar chart, or histogram).
Timelines allow you to visually tell the story of the data by marking events, occur‐
rences, and changes over time.

Visualizing Your Data | 257

www.it-ebooks.info

http://bokeh.pydata.org/en/latest/docs/gallery.html
http://www.it-ebooks.info/

Time series data
Time series display trends over time, and work especially well when focusing on one
factor. The Wall Street Journal produced a great time series on vaccines and disease
rates. The interactive element allows for exploration, and the built-in time-lapse ani‐
mation feature makes for an easy-to-read visual. The vaccination introduction mark‐
ers add clarity for the readers.

We haven’t investigated changes over time with our dataset. A good next step would
be to collect the same datasets for previous years. Such data can answer questions
like: Where is child labor increasing over time? Can we see a clear regional trend over
time? Can we see another trend over time if we join with another dataset (e.g., does
child labor increase alongside agriculture exports)?

There’s a great answer on Stack Overflow providing more information on using mat
plotlib to chart time series. Remember the agate table’s rows and columns methods,
covered in Chapter 9, which allow you to select a column or row of data when given a
selection? The lists returned by these methods can be passed to any of the matplotlib
functions to pass the data to the chart.

If you’d like to take a look at time-related data using Bokeh, check out some of their
excellent examples.

Timeline data
Timeline data can help introduce your audience to important moments in your top‐
ic’s history or a breakdown of recent developments. For example, the timeline on the
History of Vaccines website shows the history of the measles vaccine and recent
developments in California so the audience can quickly understand the topic via his‐
torical data.

If we wanted to present a timeline for our child labor story, we would look for impor‐
tant moments in international child labor history. We could research questions that
would help point out timeline events, like: When were the first laws to protect child
safety implemented? When did public opinion shift against children labor? What
public incidents and scandals involved child labor?

For the visualization, TimelineJS by Knight Lab takes a data spreadsheet and creates
simple interactive timelines.

Maps
If your findings focus on geography, a map is a great way to present your data. Maps
help people identify the impact of a topic on people and regions they know. Depend‐
ing on how much your audience knows about the area or region you are discussing,

258 | Chapter 10: Presenting Your Data

www.it-ebooks.info

http://graphics.wsj.com/infectious-diseases-and-vaccines/
http://graphics.wsj.com/infectious-diseases-and-vaccines/
http://bit.ly/plot_time_series_python
http://bit.ly/high-level_charts
http://bit.ly/high-level_charts
http://bit.ly/history_of_vaccines
http://timeline.knightlab.com/
http://www.it-ebooks.info/

you might need to include extra information and context with your map to help
relate the story to more familiar regions.

If it’s a local audience, you might include references to locally known monuments and
street names. If it’s an international audience and the story covers a particular region
(e.g., Amazon deforestation), first reference continental maps and then focus in on
your target area.

Maps can be a difficult form of data visualization. Not only are you
beholden to the geographical knowledge of your audience, but
maps don’t always show patterns in a clear or digestible way. It’s
very important when using a map to be quite familiar with the
geography of the region you are showing, so you can both display
the important geolocation elements to orient your audience and
showcase the findings.

One example of a newsworthy map is The New York Times’s vaccinations in California
map. Published during the recent measles outbreak in California, it gives the readers
the ability to zoom in and out for more details, provides short anecdotes, and shows
differences between personal belief exemptions and other causes for low vaccination
rates (such as poverty or lack of access). By focusing only on California, the map is
able to show a level of detail that on a nationwide or regional scale could be too clut‐
tered or complicated.

When preparing your map, you may want to utilize ColorBrewer,
which allows you to compare different map color schemas side by
side. You want colors that both tell the story and allow for contrast
so the reader can clearly see distinctions between groups and group
levels.

One example of a larger geographic area map is The Economist’s global debt clock.
This map shows public debt on a country-by-country basis with an interactive time‐
line to examine changes in public debt over time. Its complementary color scheme
makes the map easy to read, and one can easily differentiate between heavily indebted
countries and those with little or no debt.

The authors of the global debt clock map normalized debt to use
the US dollar as a common currency so users can compare differ‐
ent countries and debt ratios side by side. These small normaliza‐
tions aid audience understanding and enhance the impact of the
findings.

Visualizing Your Data | 259

www.it-ebooks.info

http://bit.ly/cali_vaccination_rates
http://bit.ly/cali_vaccination_rates
http://colorbrewer2.org/
http://www.economist.com/content/global_debt_clock
http://www.it-ebooks.info/

There is a very easy-to-use chart and mapping Python library called pygal with great
built-in mapping features. pygal has documentation for everything from pie charts
and scatter plots to world and country maps. We can use pygal with our agate table
to show the worldwide child labor rates. First, we need to install the library and its
dependencies by running these commands:

pip install pygal
pip install pygal_maps_world
pip install cssselect
pip install cairosvg
pip install tinycss
pip install lxml

In the pygal world map documentation, we see the two-character ISO codes for every
country are necessary to properly map using the world map. We can add these to our
ranked table using methods we already know:

import json

country_codes = json.loads(open('iso-2.json', 'rb').read())
country_dict = {}

for c in country_codes:
 country_dict[c.get('name')] = c.get('alpha-2')

def get_country_code(row):
 return country_dict.get(row['Countries and areas'])

ranked = ranked.compute([('country_code',
 agate.Formula(text_type, get_country_code)),])

for r in ranked.where(lambda x: x.get('country_code') is None).rows:
 print r['Countries and areas']

Loads the string from the iso-2.json file we downloaded from @lukes on GitHub.
This file is available in the book’s repository.

Creates a country dictionary where the keys are the country names and the val‐
ues are the ISO codes.

Defines a new function get_country_code which will take a row of data and
return the country code using the country_dict object. If there is no match, it
will return None.

Evaluates which ones we couldn’t find matches for so we can further investigate.

You should see output like this:

Bolivia (Plurinational State of)
Cabo Verde

260 | Chapter 10: Presenting Your Data

www.it-ebooks.info

http://pygal.org/
http://bit.ly/pygal_world_map
https://github.com/lukes/ISO-3166-Countries-with-Regional-Codes
http://www.it-ebooks.info/

Democratic Republic of the Congo
Iran (Islamic Republic of)
Republic of Moldova
State of Palestine
The former Yugoslav Republic of Macedonia
United Republic of Tanzania
Venezuela (Bolivarian Republic of)

We found most matches, but there are still a few missing. As we did with our
earth.json file in the previous chapter, we corrected the matches manually by modify‐
ing the names in the data file for the mismatched countries. The cleaned file, iso-2-
cleaned.json, is also available in the repository. Now we can use the preceding code
with the new, cleaned JSON to make a complete table. Note, you will have to either
rename your columns or use the new column name country_code_complete so you
don’t run into duplicate column name issues. We will utilize the table to create our
own world map using the pygal mapping methods:

import pygal

worldmap_chart = pygal.maps.world.World()
worldmap_chart.title = 'Child Labor Worldwide'

cl_dict = {}
for r in ranked.rows:
 cl_dict[r.get('country_code_complete').lower()] = r.get('Total (%)')

worldmap_chart.add('Total Child Labor (%)', cl_dict)
worldmap_chart.render()

The pygal library’s World class in the maps.world module returns our map
object.

cl_dict holds a dictionary where the keys are the country codes and the values
are the child labor percentages.

Following the pygal documentation, this code passes the label for the data and a
data dictionary.

We call the map’s render method to display the map.

We can see that render outputs the .svg to the terminal as a long, complicated string.
If we want to save it in a file, we need to call a different method. pygal gives us a few
options for different file types:

worldmap_chart.render_to_file('world_map.svg')

worldmap_chart.render_to_png('world_map.png')

Now when we open up our .svg or .png, we’ll see the chart shown in Figure 10-5.

Visualizing Your Data | 261

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 10-5. World map

If you have any trouble with the map rendering, make sure you
have all dependency libraries installed. If you don’t have an .svg file
viewer on your computer, you can always open up your .svg files in
a browser, as shown in Figure 10-5.

We strongly encourage you to check out the many other .svg options pygal provides.
The documentation is full of examples, both advanced and simple, and it’s a very
accessible .svg library for beginners.

Interactives
Interactives tell a story through website interactions or simulations. Because users can
click around and explore via the browser, they can take in the topic at their own pace
and seek out their own conclusions from the data. This can be particularly powerful
for topics which require more research to fully understand.

In response to the recent measles outbreak in the United States, The Guardian created
an outbreak interactive allowing users to see and replay effects of potential measles
outbreaks with different vaccination rates. This interactive displays different scenar‐

262 | Chapter 10: Presenting Your Data

www.it-ebooks.info

http://bit.ly/vaccination_effects
http://www.it-ebooks.info/

ios The Guardian staff researched and coded. Not every simulation turns out with the
same outcome, allowing users to understand there is an element of chance, while still
showing probability (i.e., less chance of infection with higher vaccination rates). This
takes a highly politicized topic and brings out real-world scenarios using statistical
models of outbreaks.

Although interactives take more experience to build and often require a deeper cod‐
ing skillset, they are a great tool, especially if you have frontend coding experience.

As an example, for our child labor data we could build an interactive showing how
many people in your local high school would have never graduated due to child labor
rates if they lived in Chad. Another interactive could show goods and services avail‐
able in your local mall that are produced using child labor. These take hard-to-
visualize information and present it to your audience so they can understand the data
and connect with the story.

Words
Telling the story with words comes naturally for writers and reporters. Regardless of
what visual methods you use, any writing or words you include should be useful and
appropriate for your intended audience. You might want to interview or speak with
topic experts. Including their words, ideas, and conclusions on the findings will help
your audience synthesize the information.

If you are researching how a local school board is determining budgeting for upcom‐
ing school years, you could speak to board members and perhaps get inside informa‐
tion regarding proposed changes. If you are researching upcoming product releases
for your company, you might want to talk to some of the key decision makers to
determine what may be on the horizon.

For more information on interviewing and choosing quotes to accompany your story,
Poynter has some great tips on how to become a better interviewer, and Columbia
University’s Interview Principles shares insights on how to prepare for your interview
and determine how to use different interviews for your projects’ needs.

If you are an area expert and use technical or unfamiliar jargon,
you might want to break down those topics into bite-sized chunks,
depending on your audience. A simple glossary can be useful. This
is common practice in scientific, technical, and medical writing
when aimed at a larger audience.

Images, Video, and Illustrations
If your story has a strong visual element, images and video can enhance the storytell‐
ing. For example, videotaping interviews with people related to your topic can show a

Visualizing Your Data | 263

www.it-ebooks.info

http://bit.ly/better_interviews
http://bit.ly/interviewing_principles
http://bit.ly/interviewing_principles
http://www.it-ebooks.info/

personal side of the data and may uncover other perspectives or future avenues of
investigation.

As with videos, images paint a picture for your audience. As we’ve all experienced
with graphic images of war or other gruesome current events, they can impact our
interpretation of a story. However, using images to simply shock your audience takes
away from the careful research you put into your work. Use your discretion to find a
good compromise for your storytelling.

If you don’t have access to photos and videos related to your topic or the ability to
collect your own, illustrations can be used for visual storytelling. A Washington Post
interactive on healthy vs. unhealthy office spaces uses an illustration to show the story
concepts.

For our child labor data, it’s unlikely we’ll have a chance to collect videos and photos
ourselves of the greatest violations uncovered in our data analysis. However, we can
use photos from past child labor exposés (with permission and attribution) as a rep‐
resentation of children still affected by the issue worldwide.

Presentation Tools
If you don’t want to publish your data, but you’d like to present it to a smaller (or
internal) group, creating a slide presentation is easier than ever. With many options
for how to display your data, you can create a slick presentation without much extra
work.

One top-rated tool for creating professional-looking slides is Prezi. Prezi gives you
the ability to create free publicly available slide decks and has a variety of desktop cli‐
ents (if you’d like to have private presentations, you’ll need to sign up for a paid
account). Haiku Deck is another online-only option allowing for free public slide‐
shows and private ones for a fee. You can also use Google Slides as a free and easy
alternative, particularly if you are presenting to an internal audience and your com‐
pany uses Google Apps.

Publishing Your Data
You’ve spent time researching, exploring, and presenting your data, and now you
want to share your reporting with the world online. When publishing your data
online, you should first determine whether the data should be publicly accessible.

If your presentation includes private data or data pertinent only to
your company (proprietary data), you should publish it on a
password-protected site, or on an internal network site.

264 | Chapter 10: Presenting Your Data

www.it-ebooks.info

http://bit.ly/unhealthy_offices
https://prezi.com/
https://www.haikudeck.com/
http://www.it-ebooks.info/

If you want to share your data with the world, publishing it via one of the many dif‐
ferent available web platforms should be no problem. In this section, we’ll cover how
to publish your data on free and easy-to-use blogging platforms or on your own site.

Using Available Sites
Many of the websites designed for publishing data cater to writers and investigators
like you, who want to share reporting or ideas and easily distribute them on the Web.
Here are some of the best options.

Medium
On Medium, you can create an account, start writing your post and easily embed
comments, quotes, photos, and charts. Because it’s a social media platform, others on
Medium can recommend your post, share it, bookmark it, and follow your future
articles.

Using a hosted site like Medium allows you to focus on writing and
reporting without spending time figuring out how to build and
maintain your own site.

Medium’s team maintains some nice charting tools, including Charted.co, which uses
simple CSV or TSV files to render an interactive chart. As of the writing of this book,
they have not yet enabled embedding of these charts directly into posts, but it’s likely
they will add that feature.

Medium makes it easy to embed a variety of social media, videos, photos, and other
media directly into your post. You can get great storytelling ideas by reading through
some of the top Medium posts of the month.

We recommend reading and searching Medium posts in your topic
area and connecting with other topic area authors to get a feel for
how people tell stories.

Medium is a great way to blog on a social network and share your ideas with the
world. But what if you want to run your own blog? Read on for some great options to
get your site up and running.

Easy-to-start sites: WordPress, Squarespace
If you’d rather have more control over the layout and access to your content, you
might start your own blog on Squarespace or WordPress. These platforms give you a

Publishing Your Data | 265

www.it-ebooks.info

https://medium.com/
https://github.com/mikesall/charted
http://bit.ly/medium_embed_media
http://bit.ly/medium_embed_media
https://medium.com/top-100/
http://www.squarespace.com/
https://wordpress.com/
http://www.it-ebooks.info/

maintained website for free (WordPress) or for a relatively small fee (Squarespace),
and let you customize the look and feel of your site. You can set up a domain so your
writing is hosted on your own URL.

Most web hosting providers give you a one-click install for WordPress. You’ll need to
choose a username and some site titles and ensure you have a strong and secure pass‐
word. With WordPress, you have a great selection of themes and plug-ins available to
customize the look, feel, and functionality of your site. To protect your site, we rec‐
ommend installing one of the popular security plug-ins and reading WordPress’s sage
advice around security.

Getting set up with Squarespace is a matter of signing up on their site and choosing a
layout. You can customize your connected social media, your domain, and whether
you’d like to have an ecommerce shop.

Once your site is up and running, adding content is straightforward. You’ll want to
post new pages or posts, add text and images using the built-in editors (or, if you’re
using WordPress, you can install extra editor plug-ins with more features), and then
publish your content.

You can make your posts easier to find by taking the time to fill out
a description and keywords to increase your visibility via search
engine optimization (SEO). There are WordPress plug-ins and
Squarespace features to do so for each post.

Your own blog
If you run your own website or blog, you already have a great platform for sharing
your reporting. You need to ensure you can properly embed your visual storytelling.
Most of the charts we have been working with can be easily embedded into the
HTML on your site.

If you are on a platform other than WordPress or Squarespace, you might need to
research how to share charts, videos, and photos on your site. We recommend reach‐
ing out the platform’s community or creators or reading through the site’s how-tos
and documentation to determine how to best embed images, charts, and interactives.

Open Source Platforms: Starting a New Site
We’ve mentioned options for getting a new site up and running using free or low-cost
platforms like Squarespace and WordPress; but if you’d like to launch, run, and main‐
tain your own site, you can pick from a wealth of great open source platforms.

266 | Chapter 10: Presenting Your Data

www.it-ebooks.info

https://wordpress.org/themes/browse/popular/
https://wordpress.org/plugins/browse/popular/
http://codex.wordpress.org/Hardening_WordPress
http://codex.wordpress.org/Hardening_WordPress
http://www.it-ebooks.info/

Ghost
One easy platform to run is Ghost. Ghost uses Node.js, an open source JavaScript
asynchronous server, which is fun to use and learn if you’re interested in JavaScript.
Because it’s asynchronous, it has great performance and can handle a lot of traffic.
Ghost also offers the ability to set up a hosted site, similar to WordPress or Square‐
space, for a small fee.

If you’d like to host your own Ghost blog, DigitalOcean and Ghost have partnered to
create an easy-to-use and install server image to get up and running with Ghost on
your server in less than an hour. If it’s your first time setting up a server, we highly
recommend this route, as some of the initial work is completed for you.

If you have your own servers and you’d like to install Ghost from scratch or on a dif‐
ferent platform, Ghost provides some how-tos. The main steps you will need to take
are:

1. Download and install the latest source code.
2. Get node running. (We recommend using nvm.)
3. Install node dependencies using npm (the node version of pip).
4. Get pm2 running to manage your Ghost processes.
5. Set up nginx to talk to the running Ghost processes using a gateway.
6. Get blogging!

If you run into any issues, you can hop into the Ghost slack channel and see if some‐
one can help you, or search for more information on Stack Overflow.

GitHub Pages and Jekyll
If you are using GitHub for your code, you can also use it to host your website. Git‐
Hub Pages, a GitHub-run website hosting tool, gives you flexibility for deployment
and eases content creation. With GitHub Pages, you can deploy static content directly
to your GitHub page by pushing to your repository. If you’d like to use a framework,
you can use Jekyll, a Ruby-based static page generator with GitHub Page’s integration.

Jekyll’s documentation has an explanatory overview covering how to get Jekyll up and
running locally, but we recommend reading Barry Clark’s article for Smashing Maga‐
zine, where he lays out how to fork an existing repository, get your site up, and mod‐
ify Jekyll settings and features. If you’d rather not use Jekyll but still want to use
GitHub Pages, you can generate static HTML files with a library or by hand and push
those files to your GitHub Pages repository.

Publishing Your Data | 267

www.it-ebooks.info

https://github.com/tryghost/Ghost
https://nodejs.org/
https://ghost.org/
http://bit.ly/digitalocean_ghost
http://support.ghost.org/deploying-ghost/
https://github.com/creationix/nvm
https://github.com/Unitech/pm2
https://ghost.org/slack/
http://stackoverflow.com/
https://pages.github.com/
https://pages.github.com/
http://jekyllrb.com/
http://jekyllrb.com/docs/home/
http://bit.ly/jekyll_github_blogs
http://bit.ly/jekyll_github_blogs
http://www.it-ebooks.info/

One easy-to-use Python HTML generator is Pelican, which takes
AsciiDoc, Markdown, or reStructuredText files and turns them
into static content. It has easy steps to enable commenting and ana‐
lytics tracking and fairly thorough instructions on getting started
with GitHub pages.

There are plenty of other static site generators, and many write-ups on how to inte‐
grate them with GitHub Pages. One option for setting up a GitHub Pages blog is
Hexo, a Node.js-based framework. Octopress is another great option; it’s built on
Jekyll, so you can easily use GitHub Pages and Ruby to publish and deploy your site.

One-click deploys
If you’d like to stick with a bigger blogging or website framework such as WordPress,
DigitalOcean has many one-click installs enabling you to set up your server and
install all the necessary libraries and databases in a very short time period. It also pro‐
vides a handy tutorial describing how to set up WordPress on a droplet.

In addition to large-scale hosting providers, you can also use Python, Ruby, and other
open source platforms with Heroku, a cloud-based application host. If you are using
or learning an open source framework, you can use Heroku to deploy your website; it
offers great documentation and tech support.

No matter what framework or hosting solution you use, it’s important to focus on an
easy way to publish your content or code online. Choose something straightforward
and simple and focus your attention on getting your content properly displayed, pub‐
lished, and shared with the world.

Jupyter (Formerly Known as IPython Notebooks)
We’ve covered how to share your findings, but what if you’d also like to share your
code, data, and process? Depending on your audience, it may be appropriate to share
your code and allow people to interact directly with it. If you are sharing with collea‐
gues or peers, this is a great way to show how you went about your research.

Jupyter notebooks (formerly known as IPython notebooks) are a great way to share
your Python code and charts generated by your code. These notebooks combine the
ease of using a browser with IPython’s interactive features. Notebooks are also tre‐
mendously useful for iterative code design and data exploration.

Learning a new library or playing around with some new data?
Save your work in a Jupyter notebook. Once you’ve iterated on and
improved your code, you can move the important bits of the code
into a repository and properly structure, document, and synthesize
them in one place.

268 | Chapter 10: Presenting Your Data

www.it-ebooks.info

https://github.com/getpelican/pelican
http://bit.ly/publishing_to_github
http://bit.ly/publishing_to_github
http://bit.ly/hexo_setup
https://github.com/octopress/octopress
https://www.digitalocean.com/features/one-click-apps/
http://bit.ly/one-click_wordpress_install
https://devcenter.heroku.com/start
https://jupyter.org/
http://ipython.org/notebook.html
http://www.it-ebooks.info/

Getting Jupyter up and running locally is simple; just run this command:

pip install "ipython[notebook]"

To start your notebook server, run:

ipython notebook

You should see some terminal output like:

[NotebookApp] Using MathJax from CDN: https://cdn.mathjax.org/mathjax/latest/
 MathJax.js
[NotebookApp] Terminals not available (error was No module named terminado)
[NotebookApp] Serving notebooks from local directory: /home/foo/my-python
[NotebookApp] 0 active kernels
[NotebookApp] The IPython Notebook is running at: http://localhost:8888/
[NotebookApp] Use Control-C to stop this server and shut down all kernels.
Created new window in existing browser session.

This is the notebook server starting up. You will also see a new browser window (or
tab) open to an empty notebook.

Depending on what folder you are running your notebook in, you might see some
files in your browser. The notebook server runs directly from whatever folder you are
in and displays that folder’s contents. We recommend creating a new folder for your
notebooks. To stop the server so you can create a new folder, press Ctrl-C (Windows
and Linux) or Cmd-C on a Mac in the running terminal. Make a new directory,
change into it, and restart your server, like so:

mkdir notebooks
cd notebooks/
ipython notebook

Let’s begin using Jupyter by starting a new notebook. To do that, click the New drop-
down menu and choose “Python 2” under the Notebooks heading. Once you have
created a new notebook, give it a useful name. To do so, click on the title section (it
should currently say “Untitled”) and enter a new name. Naming your notebooks will
save you hours of searching later.

In Jupyter, each text area is called a cell. Notebooks support many different cell types.
It’s a great idea to have some Markdown cells at the top or between sections of code to
explain and document your code. Figure 10-6 shows an example of adding a header.

Publishing Your Data | 269

www.it-ebooks.info

https://daringfireball.net/projects/markdown/syntax
http://www.it-ebooks.info/

Figure 10-6. Adding a Markdown title

To start writing Python, simply click on the next available cell and start typing. When
you are done with whatever statement or function you are writing, hit Shift+Enter.
Your code will execute and a new cell will appear for your next Python code. As you
can see in Figure 10-7 and your own notebook, you can see any and all outputs you’d
expect in a normal Python interpreter.

Figure 10-7. Working in Jupyter

There are a ton of great Jupyter (and IPython) notebook tutorials available, but a
good starting point might be to retry some code we’ve been using in this book.

270 | Chapter 10: Presenting Your Data

www.it-ebooks.info

http://www.it-ebooks.info/

We recommend organizing your notebooks similar to your reposi‐
tory. You might want to have a data folder containing your data in
the root directory of your notebook folder, and a utils folder with
scripts you can import into your notebooks. Your notebook is like
another script, only it’s interactive and in your browser.

When you are done using a notebook, hit the Save button (to make sure it creates a
new checkpoint so your files are updated). If you are done with a particular notebook
but still using other notebooks, it’s a good idea to stop the old notebook process. To
do so, navigate to the Running tab in your server and click the Shutdown button.
When you are done with all of your notebooks, save them all and shut down your
server in the running notebook terminal using Ctrl-C or Cmd-C.

Shared Jupyter notebooks
Now that you are familiar with using Jupyter notebooks, you can set one up to share
your code with others using a shared server. This will allow others to access your
notebook on the normal Internet (not just localhost, like the notebook run from your
terminal).

There are some great tutorials available on how to set up a notebook server using
DigitalOcean, Heroku, Amazon Web Services, Google DataLab, or whatever server
you’d like.

Remember to use secure passwords with your notebook server to
ensure your notebooks are being used only by those with the pass‐
word. This will keep your server and data safe.

We recommend setting up a version control system like Git (explored in more depth
in Chapter 14) for your Jupyter notebooks as well, so you can have a history of your
notebooks on a daily or weekly basis. This way, you can revert them if anything gets
removed, and it helps you store and organize your code.

If you are using a shared notebook server, make sure people know
how to run all of the code if the kernel has been interrupted, which
can happen if the server is restarted or if someone stops or restarts
the kernel in a notebook. To run all notebook code, select the Cell
drop-down in the notebook’s toolbar and click “Run All.” You
should also advise users to use Shutdown to stop notebooks when
they are done working so you don’t have useless running processes
on your server.

Publishing Your Data | 271

www.it-ebooks.info

http://calebmadrigal.com/ipython-notebook-vps/
http://calebmadrigal.com/ipython-notebook-vps/
https://github.com/mietek/instant-ipython
http://bit.ly/html_notebook_aws
https://cloud.google.com/datalab/
http://bit.ly/notebook_server
http://bit.ly/notebook_server
http://www.it-ebooks.info/

Jupyter notebooks, both local and shared, are a great tool for presenting your data
and workflow. They are also incredibly useful to run locally as you iterate through
your data exploration and analysis. As your Python knowledge grows, you can
migrate your scripts to Python 3 and run JupyterHub, a multiuser notebook server
that runs many different languages (including Python) and is currently under active
development.

Whether you choose to publish on a notebook server or an open source platform,
you now possess the skills to analyze how to best present and publish your findings,
data, and code.

Summary
You’ve learned how to get your data into a presentable form and distribute it via the
Web. You have many publishing options with varying levels of privacy and mainte‐
nance requirements. You can set up a site for your reporting and create beautiful
graphs and charts to tell your story. With the power of Jupyter, you can easily share
and present the code you’ve written and teach others a bit of Python in the process.

You’ve also been introduced to the libraries and concepts listed in Table 10-1.

Table 10-1. New Python and programming concepts and libraries

Concept/Library Purpose

matplotlib library
for charting

Allows you to generate simple charts with two charting libraries. You can use labels and titles for
your charts to show your data in a concise way.

Bokeh library for more
complex charts

Allows you to easily generate more complex charts, along with charts using more interactive
features.

pygal library for SVG
charts and maps

For a slicker view and the ability to generate SVGs, pygal gives you the ability to pass your data
using simple functions.

Ghost blogging platform A Node.js-backed blogging platform to quickly set up a blog on your own server (or hosted on
Ghost’s infrastructure) to share stories on your own site.

GitHub Pages and Jekyll A simple publishing platform utilizing GitHub to share your posts and presentations via a simple
repository push.

Jupyter notebooks An easy way to share your code with other developers or colleagues, as well as a nice way to get
started developing your own code using an agile (i.e., trial and error) approach.

Next, we’ll move on to how to gather even more data via web scraping and API usage.
The lessons you’ve learned in this chapter can be used with the data you’ll collect
from this point forward, so keep reading and take your new presentation skills with

272 | Chapter 10: Presenting Your Data

www.it-ebooks.info

https://github.com/jupyter/jupyterhub
http://www.it-ebooks.info/

you. In the following chapters, you will acquire more advanced Python data skills,
allowing you to better collect, evaluate, store, and analyze data with Python. The
storytelling tools you learned in this chapter will aid you in your bright future of
Python data wrangling and sharing what you learn with your audience and the world.

Summary | 273

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11

Web Scraping: Acquiring and Storing Data
from the Web

Web scraping is an essential part of data mining in today’s world, as you can find
nearly everything on the Web. With web scraping, you can use Python libraries to
explore web pages, search for information, and collect it for your reporting. Web
scraping lets you crawl sites and find information not easily accessible without
robotic assistance.

This technique gives you access to data not contained in an API or a file. Imagine a
script to log into your email account, download files, run analysis, and send an aggre‐
gated report. Imagine testing your site to make sure it’s fully functional without ever
touching a browser. Imagine grabbing data from a series of tables on a regularly
updated website. These examples show how web scraping can assist with your data
wrangling needs.

Depending on what you need to scrape—local or public websites, XML documents—
you can use many of the same tools to accomplish these tasks. Most websites contain
data in HTML code on the site. HTML is a markup language, and uses brackets (like
our XML example in Chapter 3) to hold data. In this chapter, we will use libraries that
understand how to parse and read markup languages like HTML and XML.

There are many sites that use internal APIs and embedded JavaScript to control the
content on their pages. Because of these new ways to build the Web, not all of the
information can be found using page-reading scrapers. We’ll also learn how to use
some screen-reading web scrapers for sites with multiple data sources. Depending on
the makeup of the site, you might also be able to connect to an API, which you’ll
learn more about in Chapter 13.

275

www.it-ebooks.info

http://www.it-ebooks.info/

What to Scrape and How
Web scraping opens up a wide world of possibilities for data collection. There are
millions of websites on the Internet with a huge variety of content and data you might
use for your projects. Being a conscientious web scraper, you’ll want to inform your‐
self about each site and what content you can scrape.

Copyright, Trademark, and Scraping
When scraping on the Web, you should think about the data you collect and its use as
you would any media you find (from a newspaper, magazine, book, or blog). Would
you download someone else’s photo and post it as your own? No—that would be
unethical and, in some cases, illegal.

Learning about aspects of media law like copyright and trademark can inform your
decisions, particularly if you are scraping data considered to be someone’s intellectual
property.

Investigate the domain and look for legal notices about what is allowed and disal‐
lowed, and peruse the robots file to better understand the site owner’s wishes. If you
have a question about whether the data can be scraped, reach out to a lawyer or the
site itself. Depending on where you live and what you use the data for, you might
want to find a digital media legal organization to contact in case you have any ques‐
tions surrounding the precedents and laws in your country.

For most web scraping, it makes sense to scrape text rather than
links, images, or charts. If you also need to save links, images, or
files, most of these can be downloaded using simple bash com‐
mands (like wget or curl), which require no Python. You could
simply save a list of the file URLS and write a script with to down‐
load your files.

We will start with simple text scraping. Most web pages are built with a similar struc‐
ture defined in proper HTML standards. Most sites have a head where most of the
JavaScript and styles for the page are defined along with other extra information, like
meta tags for services like Facebook and Pinterest and descriptions for search engine
usage.

After the head comes the body. The body is the main section of the site. Most sites use
containers (which are markup nodes similar to our XML nodes) to organize the site
and allow the site’s content management system to load content into the page.
Figure 11-1 shows how a typical web page is organized.

276 | Chapter 11: Web Scraping: Acquiring and Storing Data from the Web

www.it-ebooks.info

http://www.dmlp.org/legal-guide/copyright
http://www.dmlp.org/legal-guide/trademark
http://www.dmlp.org/legal-guide/intellectual-property
http://www.dmlp.org/legal-guide/intellectual-property
http://www.robotstxt.org/robotstxt.html
http://bit.ly/wget_v_curl
http://www.it-ebooks.info/

Figure 11-1. Anatomy of a web page

For many sites, the top section of the page contains navigation and links to the major
site sections or related topics. Links or ads often appear down the sides of the page.
The middle of the page usually contains the content you want to scrape.

Becoming familiar with the structure of most web pages (in terms
of where the elements are visually and where they exist in the
markup of the page) will help you scrape data from the Internet. If
you can spot where to look for the data, you’ll be able to quickly
build scrapers.

Once you know what you are looking for on the page, and you’ve analyzed the
markup by studying the construction of the page source, you can determine how
you’d like to gather the important parts of the page. Many web pages offer content on
first page load, or serve a cached page with the content already loaded. For these
pages, we can use a simple XML or HTML parser (which we’ll learn about in this
chapter) and read directly from the first HTTP response (what your browser loads
when you request a URL). It’s similar to reading documents, just with an initial page
request.

If you need to first interact with the page to get the data (i.e., enter some data and
push a button) and it’s not just a simple URL change, you will need to use a browser-
based scraper to open the page in a browser and interact with it.

If you need to traverse an entire site looking for data, you’ll want a spider: a robot that
crawls pages and follows rules to identify good content or more pages to follow. The

What to Scrape and How | 277

www.it-ebooks.info

http://www.it-ebooks.info/

library we will work with for spidering is incredibly fast and flexible, and makes writ‐
ing these types of scripts much easier.

Before we start writing our scraper code, we’ll take a look at a few websites and get
used to analyzing which scraper type to use (page reader, browser reader, or spider)
and how difficult or easy scraping the data will be. There will be times when it’s
important to determine what level of effort the data is worth. We’ll give you some
tools to determine how much effort will be needed to scrape the data and how much
time it’s worth putting into that work.

Analyzing a Web Page
Most of your time web scraping will be spent staring at markup in your browser and
figuring out how to interact with it. Getting used to your favorite browser’s debug‐
ging or development tools is an essential part of becoming an advanced web scraper.

Depending on what browser you use, the tools might have different names and func‐
tionality, but the concepts are the same. You’ll want to educate yourself on your favor‐
ite browser’s tools, be it Internet Explorer, Safari, Chrome, or Firefox.

The basics of every browser debugger are similar. You’ll have an area where you can
see the requests and page load data (usually called Network or something similar).
You’ll have another area where you can analyze the markup of the page and see the
styles and content in each tag (usually called Inspection or Elements or DOM). You’ll
have a third area where you can see JavaScript errors and interact with the JavaScript
on the page, usually called Console.

Your browser’s developer tools may have other tabs, but we really only need these
three to get a good idea of how the page is built and how to easily scrape the content.

Inspection: Markup Structure
When you want to scrape a site, first analyze the site structure and markup. As we
learned in Chapter 3, XML has a structure of nodes and content, keys and values.
HTML is quite similar. If you open your browser’s developer tools and navigate to the
Inspection, Elements, or DOM tab, you’ll notice you can see a series of nodes and
their values. The nodes and data contained therein are a bit different from what we
saw in our XML examples—they are HTML tags (some basics are outlined in
Table 11-1). The HTML tag used tells you about the content. If you were trying to
find all the photos on a page, you would look for img tags.

278 | Chapter 11: Web Scraping: Acquiring and Storing Data from the Web

www.it-ebooks.info

http://bit.ly/f12_dev_tools
https://developer.apple.com/safari/tools/
https://developer.chrome.com/devtools
http://bit.ly/ff_developer_toolbar
http://www.it-ebooks.info/

Table 11-1. Basic HTML tags

Tag Description Example

head Used to hold metadata and other essential information for
the document

<head> <title>Best Title Ever</

title> </head>

body Used to hold the majority of the content on the page <body> <p>super short page</p>

</body>

meta Used to hold metadata such as a short description of the
site or keywords

<meta name="keywords"

content="tags, html">

h1, h2,
h3…

Used to hold header information; the smaller the number,
the larger the header

<h1>Really big one!</h1>

p Used to hold text paragraphs <p>Here’s my first paragraph.</p>

ul, ol Used to hold both unordered lists (ul: think bullets) and
ordered (ol: think numbers)

first bullet

li Used to hold list items; should always be inside a list (ul or
ol)

first second</

li>

div Used to section or divide content <div id="about"><p>This div is

about things.</p></div>

a Used to link content; called “anchor tags” Best

Ever

img Used to insert an image <img src="/flying_cows.png"

alt="flying cows!" />

For a more robust and complete introduction to HTML tags and their uses, take a
look at the Mozilla Developer Network’s HTML reference, guide, and introduction.

Aside from tags used and content structure, the placement of tags in relation to one
another is important. Similar to XML, HTML has parents and children. There is a
hierarchy of relationships in the structure. The parent nodes have child nodes, and
learning how to traverse the family tree structure will help you get the content you
want. Knowing the relationship of the elements to one another, whether they are
parents or children or siblings, will help you write more efficient, fast, and easy-to-
update scrapers.

Let’s take a closer look at what these relationships mean in an HTML page. Here is a
mock-up of a basic HTML site:

Analyzing a Web Page | 279

www.it-ebooks.info

https://developer.mozilla.org/en-US/docs/Web/HTML
http://www.it-ebooks.info/

<!DOCTYPE HTML>
<html>
<head>

 <title>My Awesome Site</title>
 <link rel="stylesheet" href="css/main.css" />

</head>
<body>
 <header>
 <div id="header">I'm ahead!</div>
 </header>
 <section class="main">
 <div id="main_content">
 <p>This site is super awesome! Here are some reasons it's so awesome:</p>
 <h3>List of Awesome:</h3>

 Reason one: see title
 Reason two: see reason one

 </div>
 </section>
 <footer>
 <div id="bottom_nav">

 About
 Blog
 Careers

 </div>
 <script src="js/myjs.js"></script>
 </footer>
</body>
</html>

If we start with the very first tag of this page (below the document type declaration),
we can see all of the content of the entire page lives in the html tag. The html tag is
the root tag for the entire page.

Inside the html tag, we have the head and the body. The vast majority of the page is in
the body, but the head has some content as well. The head and body tags are the chil‐
dren of the html element. In turn, those tags contain their respective children and
descendants. The head and body tags are siblings.

Looking inside the main body tag, we can see other sets of familial relationships.
All of our list items (li tags) are children of unordered lists (ul tags). The header,
section, and footer tags are all siblings. The script tag is a child of the footer tag
and a sibling of the div tag in the footer that holds links. There are many complex
relationships, and this is just one simple page!

280 | Chapter 11: Web Scraping: Acquiring and Storing Data from the Web

www.it-ebooks.info

http://www.it-ebooks.info/

To further investigate, the following code shows a page with slightly more compli‐
cated relationships (when we are dealing with web scraping we will rarely have a per‐
fect page with everything properly organized and the relationships always intact):

<!DOCTYPE html>
<html>
 <head>
 <title>test</title>
 <link ref="stylesheet" href="/style.css">
 </head>
 <body>
 <div id="container">
 <div id="content" class="clearfix">
 <div id="header">
 <h1>Header</h1>
 </div>
 <div id="nav">
 <div class="navblock">
 <h2>Our Philosophy</h2>

 foo
 bar

 </div>
 <div class="navblock">
 <h2>About Us</h2>

 more foo
 more bar

 </div>
 </div>
 <div id="maincontent">
 <div class="contentblock">
 <p>Lorem ipsum dolor sit amet...</p>
 </div>
 <div class="contentblock">
 <p>Nunc porttitor ut ipsum quis facilisis.</p>
 </div>
 </div>
 </div>
 </div>
 <style>...</style>
 </body>
</html>

First child of previous sibling of the current element’s parent

Parent/ancestor of current element

Sibling of current element

Analyzing a Web Page | 281

www.it-ebooks.info

http://www.it-ebooks.info/

Current element

First child/descendant of current element

Child/descendant of current element

Next sibling of current element’s parent

For the purpose of our discussion, the “current element” is the second div with the
navblock class. We can see it has two children, a heading (h2), and an unordered list
(ul), and there are list items (li) inside that list. They are descendants (and depend‐
ing on what library you use could be included in “all children”). The current element
has one sibling, the first div with the navblock class.

The div with ID nav is the parent of our current element, but our element has other
ancestors. How could we navigate from our current element to the div with ID
header? Our parent element is a sibling of that header element. To get the header
element content, we could find the previous sibling of our parent element. The parent
element also has another sibling, the div with ID maincontent.

All together these relationships are described as the Document
Object Model (DOM) structure. HTML has rules and standards for
organizing the content on a page (also known as a document). The
HTML element nodes are “objects,” and they have a particular
model/standard they must follow to be displayed properly.

The more time you spend understanding the relationships between nodes, the easier
it will be to traverse the DOM quickly and efficiently with code. Later in this chapter,
we’ll cover XPath, which uses familial relationships to select content. For now, with
our improved understanding of HTML structure and the relationships between
DOM elements, we can take a closer look at locating and analyzing the content we
wish to scrape on our selected site(s).

Depending on your browser, you might be able to search the
markup using the developer tools. This is a great way to see the ele‐
ment structure. For example, if we are looking for a particular sec‐
tion of content, we can search for those words and find their
location. Many browsers also allow you to right-click on an ele‐
ment on the page and select “Inspect.” This usually opens your
developer tools to the selected element.

We’ll use Chrome for our examples, but follow along using your favorite browser.
When researching child labor in Africa, we came across data connecting child labor

282 | Chapter 11: Web Scraping: Acquiring and Storing Data from the Web

www.it-ebooks.info

http://www.it-ebooks.info/

practices with conflicts. This led us to organizations working to stop conflict zones
and conflict mining across Africa. Open up a page for one of those organizations: the
Enough Project’s Take Action page.

When we first open our developer tools—select Tools→Developer Tools in Chrome,
press F12 in Internet Explorer, choose Tools→Web Developer→Inspector in Firefox,
or enable the Develop menu in Safari’s advanced preferences—we will see markup in
one panel, CSS rules and styles in another small panel, and the actual page in a panel
above the tools. Depending on your browser, the layout might be different, but the
tools should be similar enough to see these features (displayed in Figure 11-2).

Figure 11-2. Enough Project Take Action page

If you move your cursor over an element in the markup section
(Inspection tab) of the developer tools, you will probably see differ‐
ent areas of the page highlight. This is a great feature to help you
see the different elements in the markup and page structure.

If you click on the arrows next to the div’s and main elements of the page, you can
see elements located within them (child elements). For example, on the Enough Proj‐
ect’s page, we can investigate the right sidebar (circled in Figure 11-3) by clicking to
open the main-inner-tse div and other internal div’s.

Analyzing a Web Page | 283

www.it-ebooks.info

http://www.enoughproject.org/take_action
http://www.enoughproject.org/take_action
http://www.it-ebooks.info/

Figure 11-3. Exploring the sidebar

We can see the sidebar’s images are located inside links, which are inside a paragraph,
inside a div—the list goes on and on. Understanding when images are inside links (or
vice versa), determining which content is located in paragraph tags, and figuring out
other page structure elements are essential to locating and scraping page content.

Another great use of developer tools is to investigate elements. If you right-click on a
part of the page, you should see a menu including some useful tools for web scraping.
Figure 11-4 shows an example of such a menu.

If we click the “Inspect element” option, the developer tools should open to that ele‐
ment in the source markup. This is a tremendously useful feature for interacting with
the content and seeing where it’s located in the code.

In addition to being able to interact with elements in the browser portion of the win‐
dow, you can also interact with elements in the source code portion. Figure 11-5
shows the type of menu you get by right-clicking on an element in the markup area.
We can see options to copy CSS selectors or XPath selectors (both of which we will
use in this chapter to locate and extract content from websites).

284 | Chapter 11: Web Scraping: Acquiring and Storing Data from the Web

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 11-4. Inspect element

Depending on your browser, the language and interaction of your
tools might vary, but the menu options should be similar to the
ones described here, and this should give you some idea of how to
access this data and these interactions.

In addition to finding elements and content, your developer tools show you quite a
lot about the node structure and family relationships on the page. There will often be
a section of the Inspection tab in your developer tools showing you a list of the parent
elements of your current element. The elements in this list can usually be clicked on
or selected, so you can traverse the DOM with a single click. In Chrome, this list is in
the gray section between the developer tools and the page above.

Analyzing a Web Page | 285

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 11-5. Element options

We’ve taken a look at how web pages are structured and how we can interact with
them to better understand where our content lies. We will now investigate the other
powerful tools in our web browser that make our web scraping easier.

Network/Timeline: How the Page Loads
Analyzing the Timeline and/or Network tabs in your developer tools will give you
great insights into how the content on the page loads, and in what order. The timing
and way a page loads can greatly influence how you decide to scrape the page. Under‐
standing where the content comes from can sometimes give you a “shortcut” to the
content you wish to scrape.

The Network or Timeline tab shows you what URLs were loaded, in what order, and
how long each of them took to load. Figure 11-6 shows what the Network tab looks
like in Chrome for the Enough Project page. Depending on your browser, you may
need to reload the page to see the Network tab’s page assets.

286 | Chapter 11: Web Scraping: Acquiring and Storing Data from the Web

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 11-6. Network tab with one page

We can see the entire page is loaded in one call since we only have one request in our
Network tab. This is great news as a web scraper, because it means everything is avail‐
able in only one request.

If we click on the request, we can see more options, including the source code of the
response (Figure 11-7). Viewing each request’s content will be essential to locating the
content you need when pages are loaded via many different requests. You can investi‐
gate headers and cookies by clicking on the Headers tab of your Network tab, in case
you need extra data to load the site.

Let’s take a look at a similar organization’s page with a complex Network tab. Open
your Network tab and navigate your browser to the #WeAreFairphone page on the
Fair phone initiative’s site (Figure 11-8).

You can immediately see this page is processing more requests. By clicking on each
request, you can see the content each request loads. The request order is indicated in
the timeline on your Network tab. This can help you understand how to scrape and
process the page to get to your desired content.

Figure 11-7. Network response

Analyzing a Web Page | 287

www.it-ebooks.info

http://www.fairphone.com/we-are-fairphone/
http://www.it-ebooks.info/

Figure 11-8. Network tab with lots of pages

By clicking on each of the requests, we can see most of the content is loaded after the
initial page load. When we click on the initial page request, it is quite empty. The first
question we want to ask is, is there a JavaScript call or some other call loading the
content using JSON? If so, this might be an apt “shortcut” for our script.

You know how to parse and read JSON (Chapter 3), so if you find a
URL in your Network tab with a JSON response holding the data
you need, you can use that URL to get the data and then parse the
data directly from the response. You should be aware of any head‐
ers (shown in the Headers section of your Network tab) you might
need to send with your request in order to get the proper response.

If there is no easy JSON URL matching the information you need, or if the informa‐
tion is scattered over several different requests and would require maneuvering to put
it together, you can now be certain you should use a browser-based approach to
scrape the site. Browser-based web scraping allows you to read from the page you see,
not each request. This can also be useful if you need to interact with a drop-down or
perform a series of browser-based actions before you can scrape the content properly.

The Network tab helps you figure out what requests hold your desired content and if
there are any good alternative data sources. We’ll look at JavaScript next, to see if that
can give us some ideas for our scraper as well.

288 | Chapter 11: Web Scraping: Acquiring and Storing Data from the Web

www.it-ebooks.info

http://www.it-ebooks.info/

Console: Interacting with JavaScript
You’ve now analyzed the markup and structure of the page and the timing of the page
load and network requests, so let’s move on to the JavaScript console to see what we
can learn from interacting with the JavaScript running on the page.

If you’re already familiar with JavaScript, this is fairly easy to use; if you’ve never
interacted with JavaScript, it might be useful to take a look at an easy introduction to
JavaScript course. You only need to understand JavaScript’s basic syntax, giving you
the ability to interact with elements of the page via the console. We’ll begin by review‐
ing JavaScript and style basics to see how to use the console view.

Style basics
Every web page uses some style elements to help organize, size, color, and visually
modify its content. When browsers began developing HTML standards, style stand‐
ards also came into existence. The result was Cascading Style Sheets, or CSS, which
gives us a standard way of styling pages. For example, if you want all titles to use a
different font or all photos to be centered on the page, you would write those rules in
CSS.

CSS allows styles to cascade, or inherit from parent styles and style sheets. If we
define one set of styles for the entire site, it’s quite easy for our content management
system to make one page look like every other page. Even if we have a complex site
with many different page types, we can define a major CSS document and several
minor ones, which are loaded if the page requires extra styles.

CSS works because it defines rules that allow DOM elements to be grouped together
(or separately defined) by attributes within the tags. Remember when we explored
XML in Chapter 3 and looked at nested attributes? CSS also uses these nested
attributes. Let’s take a look using our element inspection tools. Because you are likely
still on the Fairphone site, let’s take a look at some of the CSS on the page. When we
highlight an element in our bottom toolbar, we see some text displayed next to the
corresponding element on the page (Figure 11-9).

Analyzing a Web Page | 289

www.it-ebooks.info

http://www.codecademy.com/en/tracks/javascript
http://www.codecademy.com/en/tracks/javascript
http://www.it-ebooks.info/

Figure 11-9. Introduction to CSS

In this case, we already know what div means, but what is content-block? Let’s take
a look at the HTML, using our inspection techniques (right-click on the element on
the page and select “Inspect element”).

We see content-block is the CSS class (as shown in Figure 11-10 in the nested
attribute class="content-block"). It’s defined in the opening div tag, and that div
holds all of the other child tags. Speaking of CSS classes, how many classes can you
see just on this section of the page? There are plenty!

Figure 11-10. CSS class

Similar to classes, there are also CSS IDs. Let’s find one (shown in Figure 11-11) and
see how it looks different from classes.

290 | Chapter 11: Web Scraping: Acquiring and Storing Data from the Web

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 11-11. CSS ID

The HTML looks very similar, but the notation in our navigation uses a hash or
pound sign. The # is a proper CSS selector for IDs. With classes, we use . (as shown
in div.content-block).

CSS structure and syntax state that ids should be unique, but you
can have many elements with the same class. Pages don’t always
follow this structure, but it’s noteworthy. A CSS id has a greater
specificity than a class. Some elements have more than one class
so they can have many styles applied to them.

Using our right-click menu, it’s fairly easy to copy CSS selectors from the page. If you
already know CSS, this knowledge will help with your web scraping. If you don’t
know much about CSS but would like to explore it further, take a look at Codecade‐
my’s introduction to CSS course or walk through the Mozilla Developer Network’s
reference and tutorial.

Now we have a better grip on CSS and how it styles the page; but what, you may ask,
does CSS have to do with the browser console? Good question! Let’s review some
jQuery and JavaScript basics so we can see how CSS relates to interacting with con‐
tent on the web page.

jQuery and JavaScript
The evolution of JavaScript and jQuery is a much longer story than HTML and CSS,
in part because JavaScript developed without a whole lot of standards for quite a long
time. In one sense, JavaScript was (and on some level still is) the Wild West of the
website landscape.

Analyzing a Web Page | 291

www.it-ebooks.info

http://bit.ly/css_codecademy
http://bit.ly/css_codecademy
https://developer.mozilla.org/en-US/docs/Web/CSS
https://developer.mozilla.org/en-US/docs/Web/CSS
http://www.it-ebooks.info/

Although JavaScript has changed quite a bit in the past 10 years,
decade-old scripts can often still run on quite a few browsers,
meaning the push to standardize exactly how to write JavaScript
and what things are disallowed has been a bit slower than for
HTML and CSS.

JavaScript is not markup; it’s a scripting language. Because Python is also a scripting
language, you can apply some of the things you’ve learned—functions, objects and
classes, methods—to your understanding of JavaScript. As with Python, there are
extra libraries and packages to help you write clean, simple, and efficient JavaScript
code that can be understood by browsers and humans.

jQuery is a JavaScript library used by many large websites to make JavaScript easier to
read and simpler to write, while still allowing browsers (and their varied JavaScript
engines) to parse the scripts.

Started back in 2005–2006, jQuery introduced ideas to simplify and
standardize JavaScript and give JavaScript developers tools so they
don’t have to write all their code from scratch. jQuery really pushed
JavaScript development forward, creating a more object-oriented
approach with powerful and easy-to-interpret methods and a closer
link to CSS rules when selecting page elements.

Since jQuery was developed, JavaScript and CSS have had a much closer relationship,
and many newer JavaScript frameworks build on this object-oriented approach. If a
site is running jQuery, it’s easy to interact with elements on the page using their CSS
identifiers. Say we want to grab content from the content-block class we were taking
a look at on the #WeAreFairphone page (Figure 11-12). How can we do that using
our JavaScript console?

Figure 11-12. jQuery console

292 | Chapter 11: Web Scraping: Acquiring and Storing Data from the Web

www.it-ebooks.info

https://jquery.com/
http://www.it-ebooks.info/

Since the site is running JQuery, we simply type the following code onto our first line
in the Console tab:

$('div.content-block');

When we hit Enter, the console responds with the element. Click on the response in
the console and you will see subelements and children of that element. We can use
our CSS selectors with some jQuery basics (e.g., $(elem);) to select other elements
on the page. Using the $ and parentheses tells jQuery we are looking for an element
that matches the selector we pass in a string inside the parentheses.

Can you use the console to select the div with the ID weAreFairphone? Can you
select only the anchor (a) tags on the page? Try it out in your console. The console
and jQuery give us an easy way to use CSS selectors or tag names to interact with the
actual elements on the page and pull content from those elements. But what does this
have to do with Python?

Because jQuery changed the way people view the usefulness of CSS selectors, Python
scraping libraries now use these same selectors to traverse and find elements in web
pages. In the same way you can use a simple jQuery selector in your browser console,
you can use it in your Python scraper code. If you are interested in learning more
jQuery, we recommend visting the jQuery Learning Center or taking the courses at
Codecademy or Code School.

If you come across a site that doesn’t use jQuery, then jQuery won’t work in your con‐
sole. To select elements by class using only JavaScript, run:

document.getElementsByClassName('content-block');

You should see the same div and be able to navigate the same way in your console.
Now you know a little about the tools at our disposal, so let’s take a closer look at how
to determine the best way to scrape the page for interesting content. First, we will take
a look at how to investigate all parts of the page.

In-Depth Analysis of a Page
One great way to go about developing a web scraper is to first play around with the
content in your browser. Begin by selecting the content you are most interested in
and viewing it in your browser’s Inspection or DOM tab. How is the content formed?
Where are the parent nodes? Is the content wrapped in many elements, or just a few?

Before scraping a page, always check if you can scrape the page by
looking at restrictions on the content and the site’s robots.txt file.
You can find the file by typing the domain name and
then /robots.txt (e.g., http://oreilly.com/robots.txt).

Analyzing a Web Page | 293

www.it-ebooks.info

https://learn.jquery.com/
http://www.codecademy.com/en/tracks/jquery
https://www.codeschool.com/courses/try-jquery
http://oreilly.com/robots.txt
http://www.it-ebooks.info/

Then, move on to the Network and/or Timeline tab (see Figure 11-6). What does the
first page load look like? Is JSON used in the page load, and if so what do those files
look like? Is most of the content loaded after the initial request? All of these answers
can help you determine what type of scraper to use and how challenging it will be to
scrape the page.

Next, open up your Console tab. Try using some of the information from your
inspection to interact with the elements containing important content. How easy is it
to write a jQuery selector for that content? How reliably does your selector perform
across the entire domain? Can you open a similar page, use that selector, and get sim‐
ilar results?

If your content is easy to interact with in a JavaScript console using
jQuery or JavaScript, it’s likely going to be just as easy with Python.
If it’s difficult to select an element with jQuery or if what works on
one page doesn’t work on another similar page, it’s likely going to
be more difficult in Python as well.

There is rarely a page on the Web that can’t be properly parsed using the Python tools
at your disposal. We’ll teach you some tricks for messy pages, inline JavaScript, poorly
formatted selectors, and all of the awful choices you can find in code across the World
Wide Web, and outline some best practices along the way. To begin, we’ll take a look
at loading and reading a web page.

Getting Pages: How to Request on the Internet
The first step of any web scraper is…(drumroll)…connecting to the Web. Let’s go
over some basics of how this works.

When you open up a browser and type in a site name or search term(s) and hit Enter,
you are making a request. Most often, this is an HTTP (HyperText Transfer Protocol)
request (or HTTPS—the secure version). You are likely making a GET request, which
is one of many request methods used on the Internet. Your browser handles all of this
for you, along with parsing what you typed to determine whether you are requesting
a website or a search term. Depending on what it determines, it will send you to
either the search results or the website you were requesting.

Let’s take a look at the built-in Python libraries for URL requests: urllib and url
lib2. These are Python’s two standard libraries for URL requests. Using urllib2 is a
good idea, but there are a few useful methods in urllib. Take a look:

294 | Chapter 11: Web Scraping: Acquiring and Storing Data from the Web

www.it-ebooks.info

http://bit.ly/http_request_methods
https://docs.python.org/2/library/urllib.html
https://docs.python.org/2/library/urllib2.html
https://docs.python.org/2/library/urllib2.html
http://www.it-ebooks.info/

import urllib
import urllib2

google = urllib2.urlopen('http://google.com')

google = google.read()

print google[:200]

url = 'http://google.com?q='
url_with_query = url + urllib.quote_plus('python web scraping')

web_search = urllib2.urlopen(url_with_query)
web_search = web_search.read()

print web_search[:200]

Uses the urlopen method to open the request. This returns a buffer, where you
can read the contents of the web page.

Reads the contents of the entire page into the google variable.

Prints the first 200 characters so we can see the beginning of the web page.

Uses the quote_plus method to escape strings with plus signs. This is useful
when crafting website query strings—we want to search Google for web results,
and we know Google expects a query string with plus signs between the words.

See? It’s pretty easy to reach out to a URL, or a service (e.g., Google Search), receive a
response, and read that response. urllib and urllib2 both have some extra request
methods and the ability to add headers, send basic authentication, and assemble more
complicated requests.

Depending on the complexities of your request, you can also use the requests
library. requests uses urllib and urllib2 and makes the complex requests easier to
format and send. If you need to format a complicated post of a file or see what cook‐
ies you have in your session or check the response status code, requests is a great
option.

As we reviewed in our Network (or Timeline) tab, you will some‐
times find pages utilizing specific HTTP headers, cookies or other
authentication methods. You can send these along with your
request using urllib2, urllib, or the requests library.

Let’s take a look at some of the requests tools in action:

Getting Pages: How to Request on the Internet | 295

www.it-ebooks.info

http://docs.python-requests.org/en/latest/
http://docs.python-requests.org/en/latest/
http://bit.ly/complicated_post_requests
http://bit.ly/quickstart_cookies
http://bit.ly/quickstart_cookies
http://bit.ly/response_status_codes
http://en.wikipedia.org/wiki/List_of_HTTP_header_fields
http://www.it-ebooks.info/

import requests

google = requests.get('http://google.com')

print google.status_code

print google.content[:200]

print google.headers

print google.cookies.items()

Calls the requests library’s get method to send a GET request to the URL.

Calls the status_code attribute to make sure we have a 200 response (properly
completed request). If we don’t have a 200, we could decide to operate our script
logic differently.

Checks the response’s headers attribute to see what headers Google sends back.
We can see the headers attribute is a dictionary.

Reads the cookies Google sends in a response using the cookies attribute and
calls the items method on that dictionary to show the key/value pairs.

Using the requests library, we can make different code decisions based on the
response and its attributes. It’s easy to use and has great documentation. Whether you
use urllib or requests, you can make simple and complex requests with only a few
lines of Python. We now know the basics of requesting a web page, so we can start
parsing responses. We’ll first learn about Beautiful Soup, a simple Python web page
parser.

Reading a Web Page with Beautiful Soup
Beautiful Soup is one of the most popular and simple libraries for Python web scrap‐
ing. Depending on your needs, it may provide everything you’re looking for in a web
scraper. It is simple, straightforward, and fairly easy to learn. Let’s take a look at pars‐
ing a page using Beautiful Soup. First, install the library using pip (we use beauti
fulsoup4 as the previous version is no longer being supported and developed):

pip install beautifulsoup4

Let’s take another look at one of the simple pages we inspected earlier, the Enough
Project’s Take Action page. We want to see if we can properly parse all of the calls to
action on the page and save them. Here’s how to import the page into Beautiful Soup
so we can start reading it:

296 | Chapter 11: Web Scraping: Acquiring and Storing Data from the Web

www.it-ebooks.info

http://bit.ly/beautiful_soup_docs
http://www.enoughproject.org/take_action
http://www.enoughproject.org/take_action
http://www.it-ebooks.info/

from bs4 import BeautifulSoup
import requests

page = requests.get('http://www.enoughproject.org/take_action')

bs = BeautifulSoup(page.content)

print bs.title

print bs.find_all('a')

print bs.find_all('p')

First, we import the parser directly from the beautifulsoup4 library.

Using the requests library to grab the content of the page, this line assigns the
response (and its content) to the page variable.

To start parsing with Beautiful Soup, this line passes the HTML of the page into
the BeautifulSoup class. We can grab the response’s page source using the
content attribute.

Once we have parsed the page object, we can use its attributes and methods. This
line asks Beautiful Soup to find all a tags (or links) on the page.

We can open a page, read the response into a Beautiful Soup object, and use the
attributes of that object to see the title, all of the paragraphs on the page, and all of the
links on the page.

Because we’ve learned about family relationships in HTML, let’s take a look at some
relationships on the page:

header_children = [c for c in bs.head.children]

print header_children

navigation_bar = bs.find(id="globalNavigation")

for d in navigation_bar.descendants:
 print d

for s in d.previous_siblings:
 print s

We use a list comprehension to create a list of all of the children from the header
of the page. By stringing together the Beautiful Soup page object along
with .head, which calls the head of the page, and then .children, we can view all

Reading a Web Page with Beautiful Soup | 297

www.it-ebooks.info

http://www.it-ebooks.info/

of the nodes contained in the header. If we wanted to, we could use this to parse
the header’s meta content, including the page description.

If you inspect the page using the developer tools, you’ll see the navigation bar is
defined by using a CSS selector ID of globalNavigation. This line uses the page
object’s find method, passes an ID, and locates the navigation bar.

We iterate over the descendants of the navigation bar using the navigation bar’s
descendants method.

With the final descendant from our navigation bar, this line uses .previous_sib
lings to iterate over the siblings of our navigation elements.

The family trees let us navigate using the built-in attributes and methods in the Beau‐
tiful Soup library’s page class. As we can see from our header and navigation bar
examples, it’s easy to select an area of the page and navigate the children, descendants,
or siblings. Beautiful Soup’s syntax is very simple and chains together elements and
their attributes (like .head.children). With this in mind, let’s focus on the main sec‐
tions of the page and see if we can pull out some of the content we may be interested
in viewing.

If we inspect the page using our developer tools, we notice a few things. First, it looks
like each of the action items are located in a views-row div. These divs have many
different classes, but they all have the views-row class. It’s a good place to start pars‐
ing them. The headline is located in an h2 tag and the link is also in that h2 tag, inside
an anchor tag. The calls to action are in paragraphs in divs that are children of the
views-row div. We can now parse the content using Beautiful Soup.

First, we want to find the pieces of content using what we know about Beautiful Soup
and what we understand about the page structure and how to navigate it. Here’s how
to do that:

from bs4 import BeautifulSoup
import requests

page = requests.get('http://www.enoughproject.org/take_action')

bs = BeautifulSoup(page.content)

ta_divs = bs.find_all("div", class_="views-row")

print len(ta_divs)

for ta in ta_divs:
 title = ta.h2
 link = ta.a

298 | Chapter 11: Web Scraping: Acquiring and Storing Data from the Web

www.it-ebooks.info

http://www.it-ebooks.info/

 about = ta.find_all('p')
 print title, link, about

Uses Beautiful Soup to find and return all of the divs with a class containing the
string views-row.

Prints to check if we have the same number here as the number of rows of stories
we can see on the website, indicating we’ve properly matched our rows.

Iterates over the rows and grabs the tags we want based on our page investiga‐
tion. The title is in an h2 tag, and it’s the only h2 tag in the row. The link is the
first anchor tag.

Matches all paragraph tags to get the text, as we’re not sure how many there are
per row. Because we use the .find_all method, Beautiful Soup returns a list
rather than the first matching element.

You should see something similar to:

<h2><a href="https://ssl1.americanprogress.org/o/507/p/dia/action3/common/public/
?action_KEY=391">South Sudan: On August 17th, Implement "Plan B" </h2> <a
href="https://ssl1.americanprogress.org/o/507/p/dia/action3/common/public/
?action_KEY=391">South Sudan: On August 17th, Implement "Plan B"
[<p>During President Obama's recent trip to Africa, the international community
set a deadline of August 17 for a peace deal to be signed by South Sudan's
warring parties.....]

The content may change as the site is updated, but you should see an h2 element, then
an anchor (a) element, and then a list of paragraphs for each node.The current output
is messy—not only because we are using a print, but also because Beautiful Soup
prints out the entire element and its contents. Instead of the entire element, we’d like
to hone in on the essential parts, namely the title text, link hrefs, and paragraph text.
We can use Beautiful Soup to take a closer look at these pieces of data:

all_data = []

for ta in ta_divs:
 data_dict = {}
 data_dict['title'] = ta.h2.get_text()
 data_dict['link'] = ta.a.get('href')
 data_dict['about'] = [p.get_text() for p in ta.find_all('p')]
 all_data.append(data_dict)

print all_data

We use the get_text method to extract all strings from the HTML element. This
gives us the title text.

Reading a Web Page with Beautiful Soup | 299

www.it-ebooks.info

http://www.it-ebooks.info/

To get an attribute of an element, we use the get method. When we see Foo and we want to extract the link, we can
call .get("href") to return the href value (i.e., foo.com).

To extract the paragraph text, we use the get_text method and iterate over the
paragraphs returned by the find_all method. This line uses list comprehension
to compile a list of strings with the call to action content.

Now the data and output show a more organized format. We have a list of all the data
in our all_data variable. Each of our data entries is now in its own dictionary with
matching keys. We have scraped the data from the page in a cleaner way using some
new methods (get and get_text), and the data now resides in data dictionaries. Our
code is more clear and precise, and we can make it clearer by adding helper functions
(like we covered in Chapter 8).

In addition, we could automate the script to check if there are new calls to action. If
we saved our data to SQLite and used it for a monthly review of labor practices in the
Congo, we could automate our reporting. With each new report, we could extract this
data and raise more interest in fighting conflict mining and child labor.

Beautiful Soup is an easy-to-use tool, and the documentation is rife with examples of
how to use the many other methods available. The library is great for beginners and
has many simple functions; however, compared with some other Python libraries, it’s
oversimplified.

Because Beautiful Soup’s parsing is regex-based, it’s great to use with really broken
pages lacking proper tag structure. But if you’re going to traverse more complicated
pages, or you’d like your scraper to run faster and navigate pages quickly, there are far
more advanced Python libraries you can use. Let’s take a look at a favorite library for
many talented web scraper developers: lxml.

Reading a Web Page with LXML
One of the more advanced web scrapers (and one that other advanced tools use as a
parser) is lxml. It’s incredibly powerful and fast, with a lot of great features, including
the ability to generate HTML and XML and clean up poorly written pages. Addition‐
ally, it has a variety of tools for traversing the DOM and family relationships.

300 | Chapter 11: Web Scraping: Acquiring and Storing Data from the Web

www.it-ebooks.info

http://bit.ly/beautiful_soup_docs
http://lxml.de/
http://www.it-ebooks.info/

Installing lxml
lxml has several C dependencies, making it a bit trickier to install than most Python
libraries. If you are using Windows, you may want to take a look at the open-sourced
binary builds. If you are using a Mac, it might be worth setting up Homebrew so you
can use brew install lxml. For more details on advanced setup, see Appendix D.

Let’s take a quick look at the main lxml features we’ll use for web scraping by rewrit‐
ing the Beautiful Soup code to use lxml:

from lxml import html

page = html.parse('http://www.enoughproject.org/take_action')
root = page.getroot()

ta_divs = root.cssselect('div.views-row')

print ta_divs

all_data = []

for ta in ta_divs:
 data_dict = {}
 title = ta.cssselect('h2')[0]
 data_dict['title'] = title.text_content()
 data_dict['link'] = title.find('a').get('href')
 data_dict['about'] = [p.text_content() for p in ta.cssselect('p')]
 all_data.append(data_dict)

print all_data

Here we use lxml’s parsing method, which can parse from a filename, an open
buffer, or a valid URL. It returns an etree object.

Because etree objects have far fewer possible methods and attributes than
HTML element objects, this line accesses the root (top of the page and HTML)
element. The root contains all of the possible branches (children) and twigs
(descendants) within reach. From this root we can parse down to each link or
paragraph and back up to the head or body tags of the entire page.

Using the root element, this line finds all of the divs with class views-row. It uses
the cssselect method with a CSS selector string and returns a list of matching
elements.

Reading a Web Page with LXML | 301

www.it-ebooks.info

http://lxml.de/installation.html
http://lxml.de/FAQ.html#where-are-the-binary-builds
http://lxml.de/FAQ.html#where-are-the-binary-builds
http://brew.sh/
http://www.it-ebooks.info/

To grab the titles, we use cssselect to find the h2 tag. This line selects the first
element of that list. cssselect returns a list of all matches, but we only want the
first match.

Similar to Beautiful Soup’s get_text method, text_content returns text from
within the tag (and any child tags) for lxml HTML element objects.

Here we use chained methods to get the anchor tag from the title element and
pull the href attribute from the anchor tag. This returns only the value of that
attribute, similar to Beautiful Soup’s get method.

We use list comprehension to pull out text content from each paragraph in the
Take Action div in order to get the full text.

You should see the same data extracted as before, when we were using Beautiful Soup.
What looks different is the syntax and the way the page is loaded. While Beautiful
Soup uses regex to parse the document as a large string, lxml uses Python and C
libraries to recognize page structure and traverse it in a more object-oriented way.
lxml looks at the structure of all of the tags and (depending on your computer and
how you installed it) uses the fastest method to parse the tree and return data in an
etree object.

We can use the etree object itself, or we can call getroot, which will return the high‐
est element of the tree—normally html. With this element, we can use many different
methods and attributes to read and parse the rest of the page. Our solution highlights
one way: using the cssselect method. This method takes CSS selector strings (simi‐
lar to our jQuery examples) and uses those strings to identify DOM elements.

lxml also has find and findall methods. What are the main differences between
find and cssselect? Let’s take a look at some examples:

print root.find('div')

print root.find('head')

print root.find('head').findall('script')

print root.cssselect('div')

print root.cssselect('head script')

Uses find on the root element to find divs, which returns empty. From inspect‐
ing with our browser, we know the page is full of divs!

302 | Chapter 11: Web Scraping: Acquiring and Storing Data from the Web

www.it-ebooks.info

http://www.it-ebooks.info/

Uses the find method to look at the header tag and the findall method to locate
the script elements in the header section.

Uses cssselect instead of find and properly locates all divs contained in the
document. They are returned as a large list.

Using cssselect, locates the script tags within the header section by nesting CSS
selectors. Using head script returns the same list as chaining together our find
commands from the root.

So, find and cssselect operate very differently. find utilizes the DOM to traverse
the elements and find them based on ancestry and familial relationships, whereas the
cssselect method employs CSS selectors to find all possible matches within the page
or the element’s descendants, much like jQuery.

Depending on your needs, find or cssselect may be more useful.
If the page is well organized with CSS classes, IDs and other identi‐
fiers, cssselect is a great choice. But if the page is disorganized or
doesn’t use many of those identifiers, traversing the DOM can help
you identify the location of the content via ancestry.

We want to explore other useful lxml methods. As you learn and grow as a developer,
you might feel the need to express your progress through emojis. For that reason, let’s
write a quick parser of an emoji cheat sheet to keep an up-to-date list of emojis you
can use on Basecamp, GitHub and many other tech-related sites. Here’s how to do
that:

from lxml import html
import requests

resp = requests.get('http://www.emoji-cheat-sheet.com/')
page = html.document_fromstring(resp.content)

body = page.find('body')
top_header = body.find('h2')

print top_header.text

headers_and_lists = [sib for sib in top_header.itersiblings()]

print headers_and_lists

proper_headers_and_lists = [s for s in top_header.itersiblings() if
 s.tag in ['ul', 'h2', 'h3']]

print proper_headers_and_lists

Reading a Web Page with LXML | 303

www.it-ebooks.info

http://www.emoji-cheat-sheet.com/
http://www.it-ebooks.info/

This code pulls in the body of the HTML document using the requests library
and then uses the html module’s document_fromstring method to parse the data
into an HTML element.

By viewing the page structure, we see it’s a series of headers with matching lists.
This line locates the first header so we can use familial relationships to find the
other useful sections.

This line uses list comprehension along with the itersiblings method, which
returns an iterator, to view all of the siblings.

The previous print shows our initial itersiblings list comprehension returned
more data than we needed, including some of the lower sections on the page with
div and script elements. Using page inspection, we determined the only tags we
want are ul, h2, and h3. This line uses list comprehension with an if to ensure
we return only our target content.

The itersiblings method and tag attributes help us easily locate the content we
want to select and parse. In this example, we haven’t used any CSS selectors. We know
our code won’t break if a new section is added, as long as the page keeps the content
in the header and list tags.

Why would we want to build a parser using only HTML elements?
What are the advantages of not relying on CSS classes? If a site’s
developers change its design or make mobile-friendly updates, it’s
likely they will use CSS and JavaScript to do so, rather than rewrit‐
ing the page structure. If you can use basic page structure to power
your scrapers, they will likely have longer lives and greater long-
term success than those using CSS.

In addition to itersiblings, lxml objects can iterate over children, descendants, and
ancestors. Using these methods to traverse the DOM is a great way to get acquainted
with how the page is organized and write longer-lasting code. You can also use family
relationships to write meaningful XPath—a structured pattern for XML-based docu‐
ments (like HTML). Although XPath is not the easiest way to parse a web page, it’s a
fast, efficient, and nearly foolproof way to do so.

A Case for XPath
Although using CSS selectors is an easy way to find elements and content on the
page, we would also recommend you learn and use XPath. XPath is a markup pattern
selector combining the power of CSS selectors with the ability to traverse the DOM.

304 | Chapter 11: Web Scraping: Acquiring and Storing Data from the Web

www.it-ebooks.info

https://en.wikipedia.org/wiki/XPath
http://www.it-ebooks.info/

Understanding XPath is a great way to learn web scraping and website structure.
With XPath, you can access content that is not easily read using only CSS selectors.

XPath can be used with all of the major web scraping libraries and
is much faster than most other ways to identify and interact with
content on the page. In fact, most of the selector methods you use
to interact with the page are translated into XPath within the libra‐
ries themselves.

To practice XPath, you need not look further than your browser’s tools. Many brows‐
ers come with the ability to see and copy XPath elements in the DOM. Microsoft also
has a great writeup on XPath, and there are many great tools and examples on the
Mozilla Developer Network for furthering your XPath education.

XPath follows a specific syntax to define the type of element, where it might be found
in the DOM, and what attributes it might have. Table 11-2 reviews some of the XPath
syntax patterns we can use in our web-scraping code.

Table 11-2. XPath syntax

Expression Description Example

//node_name Selects all nodes with
matching node_name from
the document

//div (select all div items in the document)

/node_name Selects all nodes with
matching node_name from
the current or preceding
element

//div/ul (select ul item(s) located in any div)

@attr Selects an attribute of an
element

//div/ul/@class (select the class of the ul item(s)
in any div)

../ Selects the parent element //ul/../ (select the parent elements of all ul
elements)

[@attr="attr_value"] Selects elements with specific
attributes

//div[@id="mylists"] (select the div that has
the ID “mylists”)

text() Selects text from a node or
element

//div[@id="mylists"]/ul/li/text() (select
text from the elements in the list in the div with ID
“mylists”)

contains(@attr,

"value")

Selects elements with
attributes containing
particular values

//div[contains(@id, "list")] (select all
div items that have “list” in the ID)

Reading a Web Page with LXML | 305

www.it-ebooks.info

http://bit.ly/xpath_examples
http://bit.ly/mdn_xpath
http://www.it-ebooks.info/

Expression Description Example

* Wildcard character //div/ul/li/* (select all descendants that are in the
list items in a ul in any div)

[1,2,3…], [last()], or
[first()]

Selects elements by the order
that they appear in the node

//div/ul/li[3] (select the third list item in a ul in
any div)

There are many more expressions, but these should get us started. Let’s investigate
how to parse familial relationships between HTML elements using XPath with our
super-awesome HTML page we created earlier in this chapter. To follow along, you
might want to pull it up in your browser from the book’s code repository (file: awe‐
some_page.html).

OK, say we want to select the links in our footer section. We can see by using our
“Inspect element” option (Figure 11-13) that the bottom bar shows a list of the ele‐
ments and their ancestors. The anchor links are inside li tags inside a ul inside a div
with a CSS id inside the footer inside the body inside the html tag (whew! thought I
was going to run out of breath there!).

Figure 11-13. Finding elements on the page

How could we write the XPath to select this? Well, there are many ways. Let’s start
with a fairly obvious path, and use the div with the CSS id to write the XPath. We
could select that div by using the XPath syntax we already know:

'//div[@id="bottom_nav"]'

306 | Chapter 11: Web Scraping: Acquiring and Storing Data from the Web

www.it-ebooks.info

https://github.com/jackiekazil/data-wrangling
http://www.it-ebooks.info/

1 If you want to use XPath on a site that doesn’t use JQuery, you’ll need to use different syntax as documented
by Mozilla. The syntax for this element would be document.evaluate('//div[@id="bottom_nav"]', docu
ment);.

We can test this using our browser’s JavaScript console. To test XPath in your console,
simply put it inside $x();, which is a jQuery console implementation for browsing
the page with XPath. Let’s take a look in our console (see Figure 11-14).1

Figure 11-14. Using the console to write XPath

We know we have valid XPath for selecting the navigation because our console
returned an object (similar to our jQuery selectors). But what we really want are the
links. Let’s take a look at how we might navigate to them from this div. We know they
are descendants, so let’s write out the family relationship:

'//div[@id="bottom_nav"]/ul/li/a'

Here we are saying we want any divs with id bottom_nav, with an unordered list
inside of them, and then the list items inside of those matches, and then the anchor
tags inside of those matches. Let’s try this again in our console (Figure 11-15).

We can see from the output in our console that we have selected those three links.
Now, we want to grab just the web addresses themselves. We know every anchor tag
has an href attribute. Let’s use our XPath to write a selector for just those attributes:

'//div[@id="bottom_nav"]/ul/li/a/@href'

When we run that selector in our console, we see we’ve properly selected only the web
addresses of our footer links (see Figure 11-16).

Reading a Web Page with LXML | 307

www.it-ebooks.info

http://bit.ly/xpath_in_js
http://bit.ly/xpath_in_js
http://www.it-ebooks.info/

Figure 11-15. XPath subelements

Figure 11-16. Finding XPath attributes

Knowing the page structure can help us get at content we might have trouble access‐
ing otherwise by using XPath expressions instead.

With the power and speed of XPath comes a learning curve. For
one, if there are spaces in the classes or IDs for the page you are
interacting with, you should use the contains pattern rather than
=. Elements can have more than one class, and XPath assumes you
are including the entire class string; using contains helps you find
any element with that substring.

Finding parent elements of elements you are interested in can also be useful. Say you
are interested in a list of items on the page. Let’s also say you can easily locate one or
more of the list items using a CSS class or a piece of text contained in the list. You can
use that information to build an XPath selector locating that element and then find

308 | Chapter 11: Web Scraping: Acquiring and Storing Data from the Web

www.it-ebooks.info

http://www.it-ebooks.info/

the parent element, giving you access to the entire list. We’ll be exploring these types
of XPath selectors in “Building a Spider with Scrapy” on page 332, as Scrapy utilizes
XPath for speedy parsing.

One reason to utilize XPath is you will find the CSS classes via CSS selectors might
not always properly select your element, especially when you are using several differ‐
ent drivers to process the page (e.g., Selenium with many browsers). XPath is inher‐
ently more specific, making it a more trustworthy way to parse pages properly.

If you are scraping a site for a long period of time and want to reuse the same code,
XPath will be less prone to break over time due to small code changes and develop‐
ment on the site. It’s a lot more common for someone to rewrite a few CSS classes or
styles than the entire site and page structure. For this reason, XPath is a safer bet than
using CSS (although not foolproof!).

Now that you’ve learned some XPath, we can try rewriting the emoji processor using
XPath syntax to properly store all of the emojis and headers for each section. Here’s
what that looks like:

from lxml import html

page = html.parse('http://www.emoji-cheat-sheet.com/')

proper_headers = page.xpath('//h2|//h3')
proper_lists = page.xpath('//ul')

all_emoji = []

for header, list_cont in zip(proper_headers, proper_lists):
 section = header.text
 for li in list_cont.getchildren():
 emoji_dict = {}
 spans = li.xpath('div/span')
 if len(spans):
 link = spans[0].get('data-src')
 if link:
 emoji_dict['emoji_link'] = li.base_url + link
 else:
 emoji_dict['emoji_link'] = None
 emoji_dict['emoji_handle'] = spans[1].text_content()
 else:
 emoji_dict['emoji_link'] = None
 emoji_dict['emoji_handle'] = li.xpath('div')[0].text_content()
 emoji_dict['section'] = section
 all_emoji.append(emoji_dict)

print all_emoji

This line finds the headers related to the emoji content. It uses XPath to grab all
of the h2 and h3 elements.

Reading a Web Page with LXML | 309

www.it-ebooks.info

http://www.it-ebooks.info/

Each of the headers located has a ul element to match. This line gathers all the ul
elements in the entire document.

We use the zip method to zip headers with their appropriate lists, which returns
a list of tuples. This line then unpacks those tuples, using a for loop to pull each
part (header and list content) into separate variables to use in the for loop.

This code iterates through the ul element’s children (li elements holding the
emoji information).

From page inspection, we know most li elements have a div containing two
span elements. These spans contain the image links for the emojis and the text
needed to evoke the emojis on the service. This line uses the XPath div/span to
return any span elements in a child div element.

To find a link for each element, this line calls the data-src attribute of the first
span. If the link variable is None, the code sets the emoji_link attribute in our
data dictionary to None.

Because data-src holds a relative URL, this line uses the base_url attribute to
make a full absolute URL.

In order to get the handle, or what text is needed to evoke the emoji, this line
grabs the second span’s text. Unlike with the logic for links, we don’t need to test
whether this exists or not, because every emoji has a handle.

For the part of the site including Basecamp sounds, there is one div for each list
item (you can easily see this by inspecting the page using your browser’s devel‐
oper tools). This code selects the div and grabs the text content from it. Because
this code is in the else block, we know these are only the sound files because
they do not use spans.

By rewriting our emoji code to use XPath relationships, we found the last block of
tags are sounds and the data in them is stored differently. Instead of having a link in a
span, there is only a div with the text to evoke the sound. If we only wanted emoji
links, we could skip adding them to our list item iteration. Depending on what data
you are interested in, your code will vary greatly, but you can always easily utilize
if...else logic to specify what content you’re after.

In less than 30 lines of code we have created a scraper to request the page, parse it by
traversing the DOM relationships with XPath, and grab the necessary content using
the appropriate attribute or text content. It’s a fairly resilient block of code, and if the
authors of the page add more sections of data, as long as the structure doesn’t change

310 | Chapter 11: Web Scraping: Acquiring and Storing Data from the Web

www.it-ebooks.info

http://www.it-ebooks.info/

drastically, our parser will continue to pull content from the page and we’ll have tons
of emojis at our fingertips!

There are many other useful lxml functions. We’ve summarized a few and their uses
in Table 11-3.

Table 11-3. LXML features

Method or attribute
name

Description Documentation

clean_html A function used to attempt to clean up poorly
formed pages so they can be properly parsed

http://lxml.de/lxmlhtml.html#cleaning-up-html

iterlinks An iterator to access every anchor tag on a page http://lxml.de/lxmlhtml.html#working-with-links

[x.tag for x

in root]

All etree elements can be used as simple
iterators that support child element iteration

http://lxml.de/api.html#iteration

.nsmap Provides easy access to namespaces, should you
ever have the pleasure of working with them

http://lxml.de/tutorial.html#namespaces

You should now feel pretty confident investigating markup on web pages and deci‐
phering how to extract content from a page using lxml, Beautiful Soup, and XPath. In
the next chapter, we’ll be moving on to other libraries you can use for different types
of scraping, such as browser-based parsing and spidering.

Summary
You’ve learned a lot about web scraping. You should now feel comfortable writing a
scraper in many formats. You know how to write jQuery, CSS, and XPath selectors
and how to easily match content using your browser and Python.

You should also feel comfortable analyzing how a web page is built using your devel‐
oper tools. You’ve sharpened your CSS and JavaScript skills, and you’ve learned how
to write valid XPath to interact directly with the DOM tree.

Table 11-4 outlines the new concepts and libraries introduced in this chapter.

Summary | 311

www.it-ebooks.info

http://lxml.de/lxmlhtml.html#cleaning-up-html
http://lxml.de/lxmlhtml.html#working-with-links
http://lxml.de/api.html#iteration
http://lxml.de/tutorial.html#namespaces
http://www.it-ebooks.info/

Table 11-4. New Python and programming concepts and libraries

Concept/Library Purpose

robots.txt file usage,
copyright and trademark
investigation

From a site’s robots.txt file as well as Terms of Service or other published legal warnings on the
page, you can determine whether you can legally and ethically scrape site content.

Developer tools usage:
Inspection/DOM

Used to investigate where on the page the content lies and how to best find it using your
knowledge of page hierarchy and/or CSS rules.

Developer tools usage:
Network

Used to investigate what calls the page makes to fully load. Some of these requests may point to
APIs or other resources so you can easily ingest the data. Knowledge of how the page loads can
help you determine whether to use a simple scraper or a browser-based one.

Developer tools usage:
JavaScript Console

Used to investigate how to interact with the elements on the page using their CSS or XPath
selectors.

urllib and urllib2
stdlib libraries

Help you make simple HTTP requests to visit a web page and get the content via the Python
standard library.

requests library Helps you more easily make complex requests for pages, particularly those requiring extra
headers, complex POST data, or authentication credentials.

BeautifulSoup

library
Allows you to easily read and parse web pages. Great for exceptionally broken pages and initial
web scraping.

lxml library Allows you to parse pages easily, using DOM hierarchy and tools like XPath syntax.

XPath usage Gives you the ability to write patterns and matches using regex and XPath syntax to quickly find
and parse web page content.

In the next chapter, you’ll be learning even more ways to scrape data from the Web.

312 | Chapter 11: Web Scraping: Acquiring and Storing Data from the Web

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12

Advanced Web Scraping: Screen Scrapers
and Spiders

You’ve begun your web scraping skills development, learning how to decipher what,
how, and where to scrape in Chapter 11. In this chapter, we’ll take a look at more
advanced scrapers, like browser-based scrapers and spiders to gather content.

We’ll also learn about debugging common problems with advanced web scraping and
cover some of the ethical questions presented when scraping the Web. To begin, we’ll
investigate browser-based web scraping: using a browser directly with Python to
scrape content from the Web.

Browser-Based Parsing
Sometimes a site uses a lot of JavaScript or other post-page-load code to populate the
pages with content. In these cases, it’s almost impossible to use a normal web scraper
to analyze the site. What you’ll end up with is a very empty-looking page. You’ll have
the same problem if you want to interact with pages (i.e., if you need to click on a
button or enter some search text). In either situation, you’ll want to figure out how to
screen read the page. Screen readers work by using a browser, opening the page, and
reading and interacting with the page after it loads in the browser.

Screen readers are great for tasks performed by walking through a
series of actions to get information. For this very reason, screen
reader scripts are also an easy way to automate routine web tasks.

The most commonly used screen reading library in Python is Selenium. Selenium is a
Java program used to open up a browser and interact with web pages through screen

313

www.it-ebooks.info

http://bit.ly/selenium_intro
http://www.it-ebooks.info/

reading. If you already know Java, you can use the Java IDE to interact with your
browser. We will be using the Python bindings to interact with Selenium using
Python.

Screen Reading with Selenium
Selenium is a powerful Java-based engine to interact directly with a website through
any of the Selenium-supported browsers. It’s a very popular framework for user test‐
ing, allowing companies to build tests for their sites. For our purposes, we will use
Selenium to scrape a site we need to interact with or one where not all content is
loaded on the first request (refer to our Figure 11-6 example, where most content is
loaded after the initial request is complete). Let’s take a look at that page and see if we
can read it with Selenium.

First, we need to install Selenium using pip install:

pip install selenium

Now, let’s get started writing Selenium code. First, we need to open the browser. Sele‐
nium supports many different browsers, but ships with a built-in driver for Firefox. If
you don’t have Firefox installed, you can either install it, or install the Selenium driver
for Chrome, Internet Explorer, or Safari. Let’s see if we can open a web page using
Selenium (in our examples, we’ll be using Firefox, but it’s very easy to switch and use
a different driver):

from selenium import webdriver

browser = webdriver.Firefox()
browser.get('http://www.fairphone.com/we-are-fairphone/')

browser.maximize_window()

Imports the webdriver module from Selenium. This module is used to call any
installed drivers.

Instantiates a Firefox browser object by using the Firefox class from the web
driver module. This should open a new Firefox window on your computer.

Accesses the URL we want to scrape by using the get method and passing a URL.
The open browser should now start to load the page.

Maximizes the open browser by using the maximize_browser method. This helps
Selenium “see” more of the content.

We now have a browser object (variable browser) with a page loaded and ready. Let’s
see if we can interact with the elements on the page. If you use your browser’s Inspec‐

314 | Chapter 12: Advanced Web Scraping: Screen Scrapers and Spiders

www.it-ebooks.info

http://bit.ly/selenium_install
https://code.google.com/p/selenium/wiki/ChromeDriver
https://code.google.com/p/selenium/wiki/InternetExplorerDriver
https://code.google.com/p/selenium/wiki/SafariDriver
http://www.it-ebooks.info/

tion tab, you’ll see the social media content bubbles are div elements with a class of
content. Let’s see if we can see them all using our new browser object:

content = browser.find_element_by_css_selector('div.content')

print content.text

all_bubbles = browser.find_elements_by_css_selector('div.content')

print len(all_bubbles)

for bubble in all_bubbles:
 print bubble.text

The browser object has a function find_element_by_css_selector that uses
CSS selectors to select HTML elements. This line of code selects the first div with
class content, which returns the first match (an HTMLElement object).

This line will print the text in that first match element. We expect to see the first
chat bubble.

This line uses the find_elements_by_css_selector method to pass a CSS selec‐
tor and find all matches. This method returns a list of HTMLElement objects.

We iterate over the list and print out the content for each.

Hmm, that’s odd. It looks like there are only two matches for the elements we want to
find (because we saw an output of 2 when we printed the length of all_bubbles), and
yet we see plenty of content bubbles on the page. Let’s take a deeper look at the
HTML elements on the page and see if we can figure out why we aren’t matching
more elements (see Figure 12-1).

Figure 12-1. iframe

Aha! When we look at the parent element for our content, we see it is an iframe in
the middle of our page. An iframe (inline frame) is an HTML tag that embeds

Browser-Based Parsing | 315

www.it-ebooks.info

http://bit.ly/mdn_iframe
http://www.it-ebooks.info/

another DOM structure into the page, essentially allowing a page to load to another
page inside itself. Our code will likely not be able to parse it, because parsers expect to
traverse only one DOM. Let’s see if we can get the iframe loaded into a new window,
so we don’t have to go through the pain of traversing two DOMs:

iframe = browser.find_element_by_xpath('//iframe')

new_url = iframe.get_attribute('src')

browser.get(new_url)

Uses the find_element_by_xpath method, which returns the first element that
matches an iframe tag

Gets the src attribute, which should contain the URL to the page in the iframe

Loads the iframe’s URL in our browser

We figured out how to load the content we wanted. Now we can see if we can load all
of the content bubbles:

all_bubbles = browser.find_elements_by_css_selector('div.content')

for elem in all_bubbles:
 print elem.text

Now we have the bubble content—excellent! Let’s collect some information: we’ll
want to retrieve the person’s name, what content they shared, the photo if there is
one, and the links to the original content.

In looking through the HTML on the page, it looks like for each content element we
have fullname and name elements to identify the person, and a twine-description
element with the text. We see there’s a picture element, and a when element with the
time data. The when element also has the original link. Let’s break it down:

from selenium.common.exceptions import NoSuchElementException

all_data = []

for elem in all_bubbles:
 elem_dict = {}

 elem_dict['full_name'] = \
 elem.find_element_by_css_selector('div.fullname').text
 elem_dict['short_name'] = \
 elem.find_element_by_css_selector('div.name').text
 elem_dict['text_content'] = \
 elem.find_element_by_css_selector('div.twine-description').text
 elem_dict['timestamp'] = elem.find_element_by_css_selector('div.when').text
 elem_dict['original_link'] = \

316 | Chapter 12: Advanced Web Scraping: Screen Scrapers and Spiders

www.it-ebooks.info

http://www.it-ebooks.info/

 elem.find_element_by_css_selector('div.when a').get_attribute('href')
 try:
 elem_dict['picture'] = elem.find_element_by_css_selector(
 'div.picture img').get_attribute('src')
 except NoSuchElementException:
 elem_dict['picture'] = None
 all_data.append(elem_dict)

This line imports NoSuchElementException from Selenium’s exception classes.
When using exception classes in a try...except block, make sure you import
and use the library’s exceptions to properly handle expected errors. We know not
every item has a photo, and Selenium will throw this exception if it can’t find the
picture HTML element we are looking for, so we can use this exception to dif‐
ferentiate the bubbles with photos and those without.

In our for loop, we iterate over the content bubbles. For each of these elem
objects, we can find elements within them by traversing further down the tree.

For each of our text elements, this line calls the HTMLElement’s text attribute,
which strips away tags in the text and returns just the text content of that
element.

The HTMLElement’s get_attribute method expects a nested attribute and returns
the value of that attribute. This line passes the href attribute to get the URL,
using nested CSS to look for an anchor tag in a div element with a class of when.

In a try block, this code looks for a photo in the div. If there isn’t a photo, the
next line catches the NoSuchElementException Selenium throws since there is no
matching element.

If we don’t find a matching element, this line adds a None value. This ensures all
items in our new list have a picture key.

We’re running into a problem pretty early in our script. You should see an exception
containing the following text:

Message: Unable to locate element:
 {"method":"css selector","selector":"div.when"}

This tells us there are some issues finding the when element. Let’s take a closer look in
our Inspection tab and see what’s going on (see Figure 12-2).

Browser-Based Parsing | 317

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 12-2. Sibling divs

Upon closer inspection, we can see the content divs and when divs are actually sib‐
lings, not parent and child in the DOM structure. This presents a problem because we
are iterating over only the content divs, not the parent div. If we take a closer look,
we can see that the twine-item-border element is the parent of both the content and
when elements. Using the code we have written, we can see if iterating over the parent
works. You will need to change what we use for all_bubbles by loading the parent
element, like so:

all_bubbles = browser.find_elements_by_css_selector('div.twine-item-border')

Rerun the previous code with that change. What happens? You will see more
NoSuchElementException errors. Because we aren’t sure every single element has the
same attributes, let’s assume they are all different and rewrite the code to account for
exceptions:

from selenium.common.exceptions import NoSuchElementException

all_data = []
all_bubbles = browser.find_elements_by_css_selector(
 'div.twine-item-border')

for elem in all_bubbles:
 elem_dict = {'full_name': None,
 'short_name': None,
 'text_content': None,
 'picture': None,
 'timestamp': None,
 'original_link': None,
 }
 content = elem.find_element_by_css_selector('div.content')
 try:
 elem_dict['full_name'] = \
 content.find_element_by_css_selector('div.fullname').text
 except NoSuchElementException:
 pass
 try:
 elem_dict['short_name'] = \

318 | Chapter 12: Advanced Web Scraping: Screen Scrapers and Spiders

www.it-ebooks.info

http://www.it-ebooks.info/

 content.find_element_by_css_selector('div.name').text
 except NoSuchElementException:
 pass
 try:
 elem_dict['text_content'] = \
 content.find_element_by_css_selector('div.twine-description').text
 except NoSuchElementException:
 pass
 try:
 elem_dict['timestamp'] = elem.find_element_by_css_selector(
 'div.when').text
 except NoSuchElementException:
 pass
 try:
 elem_dict['original_link'] = \
 elem.find_element_by_css_selector(
 'div.when a').get_attribute('href')
 except NoSuchElementException:
 pass
 try:
 elem_dict['picture'] = elem.find_element_by_css_selector(
 'div.picture img').get_attribute('src')
 except NoSuchElementException:
 pass
 all_data.append(elem_dict)

For each iteration through our items, this line adds a new dictionary and sets all
of the keys to None. This gives us a clean dictionary setup so every item has the
same keys and we can add data to the keys as we discover it.

We pull out the content div so we can select from that div. This makes our code
more specific in case there are other divs with similar names.

We use Python’s pass to move past exceptions. Because all of our keys are already
set to None, we don’t need to do anything here. Python’s pass keeps the code
moving through the exception so execution continues with the following code
block.

Once you’ve collected the data in all_data, you can print it to have a look at what
you’ve collected. Here is some example output (it’s a social media timeline, so yours
will look different than what’s shown here):

[{'full_name': u'Stefan Brand',
 'original_link': None,
 'picture': u'https://pbs.twimg.com/media/COZlle9WoAE5pVL.jpg:large',
 'short_name': u'',
 'text_content': u'Simply @Fairphone :) #WeAreFairphone http://t.co/vUvKzjX2Bw',
 'timestamp': u'POSTED ABOUT 14 HOURS AGO'},
 {'full_name': None,
 'original_link': None,

Browser-Based Parsing | 319

www.it-ebooks.info

http://bit.ly/pass_statements
http://www.it-ebooks.info/

 'picture': None,
 'short_name': u'',
 'text_content': None,
 'timestamp': None},
 {'full_name': u'Sietse/MFR/Orphax',
 'original_link': None,
 'picture': None,
 'short_name': u'',
 'text_content': u'Me with my (temporary) Fairphone 2 test phone.
 # happytester #wearefairphone @ Fairphone instagram.com/p/7X-KXDQzXG/',
 'timestamp': u'POSTED ABOUT 17 HOURS AGO'},...]

The data looks to be in varied states of disarray. Our for loop is messy and hard to
read and understand. Also, it seems like we could improve some of the ways we go
about our data collection—our date objects are just strings, when they should proba‐
bly be dates. We should play around with Selenium’s ability to interact with the page,
too, which may allow us to load more content.

We also need to debug errors we are seeing. We can’t find the short name properly;
our code seems to be returning an empty string. After some page investigation, it
appears the name div is hidden. With Selenium, hidden elements often can’t be read,
so we’ll need to use the innerHTML attribute of that element, which will return content
inside the tags. We also notice the timestamp data is stored in the title attribute and
the URL is actually stored in data-href, not the href attribute.

Over time, it becomes easier to write scraper code that works on
the first try. It also becomes easier to anticipate what might be
troublesome. Investigating with your browser’s developer tools and
debugging with IPython lets you play around with the variables
and test what might work.

On top of finding all of the data, we want to make sure our script is formed properly.
We want to create functions and better abstract our data extraction. Instead of pars‐
ing the URL from the initial page, we should simplify our code and load the page
directly. Through trial and error in our browser, we find we can remove the long
query strings for the iframe URL (i.e., ?scroll=auto&cols=4&format=embed&eh=…)
and still load the whole page with the embedded content from social media. Let’s take
a look at the cleaned-up and simplified script:

from selenium.common.exceptions import NoSuchElementException, \
 WebDriverException
from selenium import webdriver

def find_text_element(html_element, element_css):
 try:
 return html_element.find_element_by_css_selector(element_css).text

320 | Chapter 12: Advanced Web Scraping: Screen Scrapers and Spiders

www.it-ebooks.info

http://www.it-ebooks.info/

 except NoSuchElementException:
 pass
 return None

def find_attr_element(html_element, element_css, attr):
 try:
 return html_element.find_element_by_css_selector(
 element_css).get_attribute(attr)
 except NoSuchElementException:
 pass
 return None

def get_browser():
 browser = webdriver.Firefox()
 return browser

def main():
 browser = get_browser()
 browser.get('http://apps.twinesocial.com/fairphone')

 all_data = []
 browser.implicitly_wait(10)
 try:
 all_bubbles = browser.find_elements_by_css_selector(
 'div.twine-item-border')
 except WebDriverException:
 browser.implicitly_wait(5)
 all_bubbles = browser.find_elements_by_css_selector(
 'div.twine-item-border')
 for elem in all_bubbles:
 elem_dict = {}
 content = elem.find_element_by_css_selector('div.content')
 elem_dict['full_name'] = find_text_element(
 content, 'div.fullname')
 elem_dict['short_name'] = find_attr_element(
 content, 'div.name', 'innerHTML')
 elem_dict['text_content'] = find_text_element(
 content, 'div.twine-description')
 elem_dict['timestamp'] = find_attr_element(
 elem, 'div.when a abbr.timeago', 'title')
 elem_dict['original_link'] = find_attr_element(
 elem, 'div.when a', 'data-href')
 elem_dict['picture'] = find_attr_element(
 content, 'div.picture img', 'src')
 all_data.append(elem_dict)
 browser.quit()
 return all_data

Browser-Based Parsing | 321

www.it-ebooks.info

http://www.it-ebooks.info/

if __name__ == '__main__':
 all_data = main()
 print all_data

Creates a function to take an HTML element and CSS selector and return the text
element. In our last code example, we had to repeat our code again and again;
now we want to create a function so we can reuse it without needing to rewrite
code throughout our script.

Uses the abstracted function variables to return the text of the HTML element. If
we don’t find a match, returns None.

Creates a function to find and return attributes, similar to our text element func‐
tion. It requires the HTML element, the CSS selector, and the attribute we want
to pull from the selector and returns the value for that selector or None.

Uses the abstracted function variables to find the HTML element and return the
attribute.

Uses the Selenium browser class’s implicitly_wait method, which takes as an
argument the number of seconds you want the browser to implicitly wait before
moving to the next line of code. This is a great method to use if you aren’t sure
the page will load immediately. There is a lot of great Selenium documentation
on using implicit and explicit waits.

Passes CSS selectors to grab the title attribute of the abbr element located in an
anchor tag inside the when div, in order to capture the timestamp data.

Closes the browser using the quit method when we are done scraping our data.

Returns the collected data. The __name__ == '__main__' block allows us to
print the data when running from command line, or we can import the function
into IPython and run main to return our data.

Try running the script from the command line or importing it into IPython and then
running the main function. Did your data look more complete this time? You’ll also
notice we added another try...except block. We noticed that sometimes the inter‐
actions Selenium uses were interfering with the JavaScript on the page and made
Selenium throw a WebDriverException. Allowing the page more time to load and
trying again fixed the problem.

If you visit the URL in your browser, you can see you’re able to load more data as you
scroll down the page. With Selenium, we can do those things as well! Let’s take a look

322 | Chapter 12: Advanced Web Scraping: Screen Scrapers and Spiders

www.it-ebooks.info

http://bit.ly/selenium_waits
http://www.it-ebooks.info/

at some of the other neat things Selenium can do. We can try searching Google for
Python web scraping libraries and use Selenium to interact with the search results:

from selenium import webdriver
from time import sleep

browser = webdriver.Firefox()
browser.get('http://google.com')

inputs = browser.find_elements_by_css_selector('form input')
for i in inputs:
 if i.is_displayed():
 search_bar = i
 break

search_bar.send_keys('web scraping with python')

search_button = browser.find_element_by_css_selector('form button')
search_button.click()

browser.implicitly_wait(10)
results = browser.find_elements_by_css_selector('div h3 a')

for r in results:
 action = webdriver.ActionChains(browser)
 action.move_to_element(r)
 action.perform()
 sleep(2)

browser.quit()

We need to find an input. Google, like many sites, has inputs all over the place,
but usually only one big search bar visible. This line locates all form inputs so we
have a good starting batch.

This line iterates over the inputs to see if they are hidden or displayed. If
is_displayed returns True, we have a visible element. Otherwise, this loop will
keep iterating.

When a displayed input is found, we assign the value to the search_bar variable
and break out of the loop. This will find the first visible input, which is probably
the one we want.

This line sends keys and strings to the selected element using the send_keys
method (in this case, it sends keys to the search bar). It’s like typing on your key‐
board, but with Python!

Browser-Based Parsing | 323

www.it-ebooks.info

http://www.it-ebooks.info/

Selenium can also click on visible elements on the page. This line tells Selenium
to click on the search form submit button to view our search results.

To view all the search results, this line selects header elements in divs with a link,
which is how Google result pages are structured.

This code loops over each result, utilizing Selenium’s ActionChains to formulate
a series of actions, and tells the browser to perform those actions.

This line uses the move_to_element method of the ActionChain, passing the ele‐
ment we want the browser to move to.

This line calls perform, meaning the browser will move to highlight each search
result. We used a sleep, which tells Python to wait a certain number of seconds
(here, 2) before the next line executes, so your browser doesn’t move so fast you
miss the fun.

Voilà! We can now go to a site, fill out a form, submit it, and use Selenium Action‐
Chains to scroll through the results. As you have seen, ActionChains are a powerful
way to perform a series of actions in the browser. There are more great features you
can explore in Selenium’s Python bindings documentation, including explicit waits
(where the browser can wait until a particular element is loaded, not just for the page
to be complete), handling alerts, and saving screenshots, which is great for debugging
purposes.

Now that you’ve seen some of the power of Selenium, can you rewrite the code we
have for the #WeAreFairphone site and scroll through the first 100 entries? (Hint: if
you don’t want to use ActionChains to scroll through each element, you can always
use JavaScript! The Selenium driver’s execute_script method allows you to execute
JS just like in your browser console. You can use JavaScript’s scroll method. Sele‐
nium element objects also have a location attribute, which returns the x and y values
for the element on the page.)

We have learned how to manipulate and use our browser for web scraping with Sele‐
nium, but we aren’t done yet! Let’s take a look at using Selenium with a headless
browser.

Selenium and headless browsers
One of the most popular headless browser kits is PhantomJS. If you are a proficient
JavaScript developer, you can build your scrapers directly in PhantomJS. If, however,
you’d like to give it a try using Python, you can use Selenium with PhantomJS. Phan‐
tomJS works with GhostDriver to open pages and navigate across the Web.

324 | Chapter 12: Advanced Web Scraping: Screen Scrapers and Spiders

www.it-ebooks.info

http://bit.ly/action_chains
http://selenium-python.readthedocs.org/
http://bit.ly/explicit_waits
http://bit.ly/selenium_alerts
http://bit.ly/save_screenshot
http://bit.ly/execute_script
http://bit.ly/window_scroll
http://bit.ly/selenium_location
http://phantomjs.org/
https://github.com/detro/ghostdriver
http://www.it-ebooks.info/

1 If you have trouble installing PySide, take a look at the project’s documentation specific to your operating sys‐
tem. You can alternatively install PyQt. You can also check for updates in the Installation documentation on
GitHub.

Why use a headless browser? Headless browsers can be run on servers. They also run
and parse pages faster than normal browsers and can be used on more platforms than
normal browsers. If you eventually want to run your browser-based web scraping
script on a server, you’ll likely use a headless browser. You can install one and be run‐
ning in 10 minutes or less, as opposed to most other browsers, which take time to
load and get running properly (depending on the stack you are using and how you
intend to deploy).

Screen Reading with Ghost.Py
Ghost.py is a WebKit implementation for screen reading implemented to interact
directly with Qt WebKit. This is a WebKit implementation on top of Qt, a cross-
platform application development framework built in C++.

To begin working with Ghost.py, you’re going to need to install some pretty hefty
libraries. It works best if you are able to install PySide, which allows Python to con‐
nect with Qt and gives Python access to a wider range of programs and interactions.
The process can take a while, so feel free to go make yourself a sandwich after you
begin running this installation:1

pip install pyside
pip install ghost.py --pre

Let’s use Ghost.py to search the Python home page for new scraping documentation.
You start a new Ghost.py instance very simply:

from ghost import Ghost

ghost = Ghost()
with ghost.start() as session:
 page, extra_resources = session.open('http://python.org')

 print page
 print page.url
 print page.headers
 print page.http_status
 print page.content

 print extra_resources

 for r in extra_resources:
 print r.url

Browser-Based Parsing | 325

www.it-ebooks.info

http://bit.ly/install_pyqt5
https://github.com/jeanphix/Ghost.py#installation
https://github.com/jeanphix/Ghost.py#installation
http://en.wikipedia.org/wiki/Headless_browser
http://jeanphix.me/Ghost.py/
http://doc.qt.io/qt-5/qtwebkit-index.html
http://bit.ly/qt_wikipedia
https://pypi.python.org/pypi/PySide
http://python.org
http://www.it-ebooks.info/

This line calls the Ghost class’s session object and instantiates a Ghost object to
interact with pages.

The open method for the Ghost class returns two objects, so this line captures
those objects in two separate variables. The first object is the page object used to
interact with the HTML elements. The second is a list of other resources the page
loads (the same list you’d see in your Network tab).

Our page object has many attributes, such as headers, content, URLs, and content
from the page. This line looks at the content.

This code loops through the page’s extra resources and prints them to see if these
are useful. Sometimes these URLs are API calls we can use to get easier access to
data.

Ghost.py gives us insight into the resources the page uses (given in a tuple, as we can
see when we first open the page using the open method) and numerous features of the
actual page. We can also load the content of the page by using the .content attribute,
so if we wanted to parse it using one of our page parsers, like LXML, we could do so
and still proceed to interact with the page using Ghost.py.

Currently, much of Ghost.py’s power lies in executing JavaScript
(not jQuery) on the page, so you might want to have the Mozilla
Developer Network’s JavaScript guide open. This will help you
easily search for and find JavaScript to use with Ghost.py.

As we are interested in searching the Python home page for scraping libraries, let’s see
if we can locate the input box:

print page.content.contains('input')

result, resources = session.evaluate(
 'document.getElementsByTagName("input");')

print result.keys()
print result.get('length')
print resources

Tests whether an input tag exists on the page (most search boxes are simply
input elements). This returns a Boolean.

Uses some simple JavaScript to find all the elements on the page with “input” as a
tag name.

Prints to see the length of the JavaScript array in the response.

326 | Chapter 12: Advanced Web Scraping: Screen Scrapers and Spiders

www.it-ebooks.info

http://bit.ly/moz-dev-js
http://bit.ly/moz-dev-js
http://www.it-ebooks.info/

According to the JavaScript results, we only have two inputs on the page. To deter‐
mine which one to use, let’s take a look at the first one’s and see if it looks appropriate:

result, resources = session.evaluate(
 'document.getElementsByTagName("input")[0].getAttribute("id");')

print result

Indexes our list of results and asks for the id attribute. JavaScript gives us CSS
attributes directly from elements, so this is a useful way to see the CSS related to
the elements you have selected.

Similar to how we can index results in Python, we can index them in JavaScript. We
want the first input element. Then, we need to grab the CSS id of the input.

We could even write a JavaScript for loop to iterate over the list
returned by the getElementsByTagName function and evaluate the
attributes that way. If you’d like to try out the JavaScript in your
browser, you can do so using the console (see Figure 11-12).

By the name of the id (id-search-field) we can tell we’ve located our search field
element, so now let’s send some data to it:

result, resources = ghost.set_field_value("input", "scraping")

This code uses the set_field_value method, which takes a selector (here simply
"input") and sends it a string ("scraping"). Ghost.py also has a fill method which
allows you to send a dictionary of values to fill out a series of matching form fields.
This is useful if you have more than one field to fill. Now we have our search term
filled in; let’s see if we can submit our query. We see it’s in a form, so we can try a
simple form submit:

page, resources = session.fire("form", "submit", expect_loading=True)

print page.url

This line calls Ghost.py’s fire method, which fires a JavaScript event. We want to
send the form element a signal for the submit event, so it submits our search and
navigates to the next page. We also set expect_loading equal to True so Ghost.py
knows we are waiting for a page to load.

Did it work? In our testing, we received timeouts when we ran this code. We’ll be
talking about timeouts a bit later in this chapter, but this means Ghost.py stopped
waiting for a response because it was taking too long. When you are dealing with
scrapers submitting data, finding the right timeout is essential to keeping your script

Browser-Based Parsing | 327

www.it-ebooks.info

http://bit.ly/js_for_mdn
http://jeanphix.me/Ghost.py/#form
http://www.it-ebooks.info/

going. Let’s try a different way to submit. Ghost.py can interact with and click on page
elements, so let’s try that:

result, resources = session.click('button[id=submit]')

print result

for r in resources:
 print r.url

Ghost.py’s click method clicks on an object using a JavaScript selector. This
code clicks on the button with id="submit".

With most interactions via Ghost.py, you will receive a result and a list of resour‐
ces. This line looks at the resources returned from the code interactions.

Hmm—when we click on the submit button, we get a URL that looks like a console.
Let’s see if we can see what Qt WebKit is seeing. Similar to Selenium’s save_screen
shot method, Ghost.py allows us to take a look at the page.

With headless or WebKit browsers we can’t use without code, the
page sometimes appears different than it does in a normal browser.
When using Ghost.py or PhantomJS, you’ll want to utilize screen‐
shots to “see” the page the headless or kit browser is using.

We can use Ghost.py’s show method to “see” the page:

session.show()

You should see a new window open showing you the site as the scraper sees it. It
should look similar to Figure 12-3.

328 | Chapter 12: Advanced Web Scraping: Screen Scrapers and Spiders

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 12-3. Ghost page

Whoops! We are in the middle of the page. Let’s try scrolling up and having another
look:

session.evaluate('window.scrollTo(0, 0);')

session.show()

Now it should look like Figure 12-4.

This view helps us understand our error. The page has not opened as wide as it did in
our normal browser, and the search and submit inputs are not readily available. One
solution would be to reopen the page using a larger viewport; or we could set a longer
timeout for our submit.

Browser-Based Parsing | 329

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 12-4. Ghost top of page

As you can see from the documentation, the first Ghost object we
create can take arguments like viewport_size and wait_timeout.
If you’d like to restart the browser and set a larger viewport or a
longer timeout, those are valid fixes.

For now, though, we’ll see if we can use some JavaScript to get it to submit:

result, resources = session.evaluate(
 'document.getElementsByTagName("input")[0].value = "scraping";')
result, resources = session.evaluate(
 'document.getElementsByTagName("form")[0].submit.click()')

Sets the input value equal to “scraping” using pure JavaScript.

Calls the submit element of the form and actively clicks on it using the JavaScript
function.

Now if you run show again, you should see something like Figure 12-5.

330 | Chapter 12: Advanced Web Scraping: Screen Scrapers and Spiders

www.it-ebooks.info

http://bit.ly/ghost_py_docs
http://www.it-ebooks.info/

Figure 12-5. Ghost search

We have successfully searched using a Qt browser. Some of the functions are not yet
as smooth as with Selenium, but Ghost.py is still a fairly young project.

You can see how old a project is by evaluating its version numbers.
Ghost.py, as of the writing of this book, is still below 1.0 (in fact,
this book is likely only compatible with 0.2 releases). It will proba‐
bly change a lot in the next few years, but it’s a very interesting
project. We encourage you to help it by submitting ideas to the cre‐
ators and by investigating and fixing bugs!

Now that we’ve taken a look at several ways to interact with a browser in Python, let’s
do some spidering!

Spidering the Web
If you need to capture data from more than one page on a site, a spider likely is the
best solution. Web spiders (or robots) are great for finding information across an
entire domain or site (or series of domains or sites).

Spidering the Web | 331

www.it-ebooks.info

http://www.it-ebooks.info/

You can think of a spider as an advanced scraper, where you can
utilize the power of page-reader scrapers (like the ones we learned
about in Chapter 11) and apply rules allowing you to match URL
patterns to follow across the entire site.

Spiders give you power to learn how a site is structured. For example, a site could
contain an entire subsection you weren’t aware of that contains interesting data. With
a spider traversing the domain, you can find subdomains or other useful linked con‐
tent for your reporting.

When building a spider, you first investigate the site you’re interested in and then
build the page-reader piece to identify and read content. Once that is built, you can
set a list of follow rules the spider will use to find other interesting pages and content,
and your parser will collect and save content using the page-reader scraper you built.

With a spider, you should either have a clear definition of what you
want to find up front, or use a broad approach to first explore the
site and then rewrite it to be more specific. If you choose the broad
approach, you might need to do a lot of data cleanup afterward to
narrow down what you have found into a usable dataset.

We’ll start building our first spider with Scrapy.

Building a Spider with Scrapy
Scrapy is the most powerful Python web spider. It lets you use the power of LXML
(see “Reading a Web Page with LXML” on page 300) with the power of Python’s asyn‐
chronous network engine, Twisted. If you need an exceptionally fast scraper which
also handles a large amount of tasks, we highly recommend Scrapy.

Scrapy comes with some nice built-in features, including the ability to export results
in several formats (CSV, JSON, etc.), an easy-to-use server deployment structure to
run multiple on-demand scrapers, and a bunch of other neat features like using
middleware to handle proxy requests or retry bad status codes. Scrapy logs errors it
encounters so you can update and modify your code.

To use Scrapy appropriately, you need to learn the Scrapy class system. Scrapy uses
several different Python classes to parse the Web and return good content. When you
define a spider class, you also define rules and other class attributes. These rules and

332 | Chapter 12: Advanced Web Scraping: Screen Scrapers and Spiders

www.it-ebooks.info

http://scrapy.org/
http://twistedmatrix.com/trac/
http://www.it-ebooks.info/

attributes are used by the spider when it begins to crawl the Web. When you define a
new spider, you are using something called inheritance.

Inheritance
Inheritance gives you the ability to use a class as a base and build extra attributes or
methods on top of that class.

With Scrapy, when you inherit from one of the spider classes you inherit useful built-
in methods and attributes. You’ll then want to change a few of the methods and
attributes so they are specific to your spider.

Python’s inheritance is obvious: you begin defining a class and place another class
name in the parentheses of the class definition (e.g., class NewAwesomeRo

bot(OldRobot):). The new class (here, NewAwesomeRobot) is inheriting from the class
within the parentheses (here, OldRobot). Python gives us the ability to use this direct
inheritance so we can actively reuse code when writing new classes.

Inheritance allows us to use the wealth of scraping knowledge in the Scrapy library
while only redefining a few methods and some initial spider attributes.

Scrapy uses inheritance to define content to scrape on the page. For each Scrapy
project you have, you will collect a series of items and likely create a few different spi‐
ders. The spiders will scrape the page and return items (i.e., data) in whatever format
you define in your settings.

Using Scrapy spiders requires more organization than the other libraries we have
used to scrape the Web, but it’s fairly intuitive. The scraper organization makes your
projects easy to reuse, share, and update.

There are a few different types of Scrapy spiders, so let’s investigate the major similar‐
ities and differences. Table 12-1 provides a summary.

Table 12-1. Spider types

Spider name Main purpose Documentation

Spider Used to parse a particular list number
of sites and pages

http://doc.scrapy.org/en/latest/topics/spiders.html#scrapy.spider.Spider

Crawl

Spider

Used to parse a domain given a set of
regex rules on how to follow links
and identify good pages

http://doc.scrapy.org/en/latest/topics/spiders.html#crawlspider

XMLFeed

Spider

Used to parse XML feeds (like RSS)
and pull content from nodes

http://doc.scrapy.org/en/latest/topics/spiders.html#xmlfeedspider

Spidering the Web | 333

www.it-ebooks.info

http://doc.scrapy.org/en/latest/topics/spiders.html#scrapy.spider.Spider
http://doc.scrapy.org/en/latest/topics/spiders.html#crawlspider
http://doc.scrapy.org/en/latest/topics/spiders.html#xmlfeedspider
http://www.it-ebooks.info/

Spider name Main purpose Documentation

CSVFeed

Spider

Used to parse CSV feeds (or URLs) and
pull content from rows

http://doc.scrapy.org/en/latest/topics/spiders.html#csvfeedspider

SiteMap

Spider

Used to parse site maps for a given
list of domains

http://doc.scrapy.org/en/latest/topics/spiders.html#sitemapspider

For normal web scraping, you can use the Spider class. For more advanced scraping
to traverse the whole domain, use the CrawlSpider class. If you have feeds or files in
XML and CSV format, especially if they are quite large, use the XMLFeedSpider and
CSVFeedSpider to parse them. If you need to take a look at site maps (for your own
sites or elsewhere), use the SiteMapSpider.

To become more acquainted with the two major classes (Spider and CrawlSpider),
let’s build a few different crawlers. First, we’ll create a scraper to crawl our same emoji
page using a Scrapy spider. For this we will want to use the normal Spider class. Let’s
begin by installing Scrapy using pip:

pip install scrapy

It’s also recommended to install the service_identity module, which provides some
nice features for security integration as you crawl the Web:

pip install service_identity

To start a project with Scrapy, you use a simple command. You want to make sure you
are in the directory you’d like to use for your spider, as this command will create a
bunch of folders and subfolders for the spider:

scrapy startproject scrapyspider

If you list the files in your current folder, you should see a new parent folder with
numerous subfolders and files. As documented on the Scrapy site, there are a few dif‐
ferent files for configuration (scrapy.cfg in the main folder and settings.py in the
project folder, as well as a folder to put your spider files in and a file used to define
your items).

Before we build our scraper, we need to define the items we want to collect with the
page’s data. Let’s open up our items.py file (located inside the nested project folder)
and modify it to store the page data:

334 | Chapter 12: Advanced Web Scraping: Screen Scrapers and Spiders

www.it-ebooks.info

http://doc.scrapy.org/en/latest/topics/spiders.html#csvfeedspider
http://doc.scrapy.org/en/latest/topics/spiders.html#sitemapspider
http://www.emoji-cheat-sheet.com
http://www.emoji-cheat-sheet.com
http://bit.ly/scrapy_creating_project
http://www.it-ebooks.info/

-*- coding: utf-8 -*-

Define here the models for your scraped items
#
See documentation in:
http://doc.scrapy.org/en/latest/topics/items.html

import scrapy

class EmojiSpiderItem(scrapy.Item):
 emoji_handle = scrapy.Field()
 emoji_image = scrapy.Field()
 section = scrapy.Field()

We create our new class via inheritance from the scrapy.Item class. This means
we have the built-in methods and attributes of that class.

To define each field or data value, we add a new line to our class, set the attribute
name, and initialize it by setting it as a scrapy.Field() object. These fields sup‐
port any normal Python data structure, including dictionaries, tuples, lists, floats,
decimals, and strings.

You probably noticed your items.py file was mainly prebuilt. This is a really great fea‐
ture to quickstart your development and ensure you have the project structured the
right way. The startproject command supplies all of this tooling and is the best way
to begin new Scrapy projects. You can also see how easy it is to set up a new class to
collect data. With only a few lines of Python, we are able to define the fields we care
about and have our items ready to use with our spider.

To get started on your spider class, you’ll want to create a new file in the spiders folder
in your new project directory structure. Let’s call it emo_spider.py:

import scrapy
from emojispider.items import EmojiSpiderItem

class EmoSpider(scrapy.Spider):
 name = 'emo'
 allowed_domains = ['emoji-cheat-sheet.com']
 start_urls = [
 'http://www.emoji-cheat-sheet.com/',
]

 def parse(self, response):
 self.log('A response from %s just arrived!' % response.url)

Spidering the Web | 335

www.it-ebooks.info

http://www.it-ebooks.info/

All Scrapy imports use the root project folder as the starting module point, so
you’ll want to include the parent folder in the import. This line imports the Emo
jiSpiderItem class from the emojispider.items module.

We define our EmoSpider class using inheritance, basing the new class on the
simple scrapy.Spider class. This means our spider will need certain initializa‐
tion attributes, so it knows which URLs to scrape and what to do with scraped
content. We define these attributes on the next few lines (start_urls, name, and
allowed_domains).

The spider name is what we will use when we want to identify the spider in
command-line tasks.

allowed_domains tells the spider what domains to scrape. If it comes across a
link to a domain not included in this list, it will ignore it. This attribute is useful
when writing a crawl scraper so your scraper doesn’t end up attempting to scrape
all of Twitter or Facebook if it follows a link there. You can also pass subdomains.

The Spider class uses the start_urls attribute to iterate through a listing of
URLs to scrape. With a CrawlSpider, these are used as a jumping-off point for
finding more matching URLs.

This line redefines the spider’s parse method to do something by defining a
method within the class using def and the method name. When you are defining
methods for classes, you will almost always begin by passing self. This is
because the object calling the method is the first argument (i.e., list.append()
first passes the list object itself, then passes the argument within the parenthesis).
The next argument for parse is the response. As covered in the documentation,
the parse method will be passed a response object. We end the line with a colon,
just as we would when defining any function.

To begin testing our spider, this line from the Scrapy tutorial uses the spider’s log
method to send a message to our log. We use the response’s URL attribute to
show the response’s location.

To run this Scrapy spider, we need to ensure we are in the proper directory (scrapy‐
spider with the scrapy.cfg file in it), and then run the command-line argument to
parse the page:

scrapy crawl emo

The log should show your spider opening and show what middleware it’s running.
Then, near the end, you should see something like this:

336 | Chapter 12: Advanced Web Scraping: Screen Scrapers and Spiders

www.it-ebooks.info

http://bit.ly/scrapy_spiders
http://bit.ly/scrapy_spiders
http://bit.ly/scrapy_parse
http://www.it-ebooks.info/

2015-06-03 15:47:48+0200 [emo] DEBUG: A resp from www.emoji-cheat-sheet.com
 arrived!
2015-06-03 15:47:48+0200 [emo] INFO: Closing spider (finished)
2015-06-03 15:47:48+0200 [emo] INFO: Dumping Scrapy stats:
 {'downloader/request_bytes': 224,
 'downloader/request_count': 1,
 'downloader/request_method_count/GET': 1,
 'downloader/response_bytes': 143742,
 'downloader/response_count': 1,
 'downloader/response_status_count/200': 1,
 'finish_reason': 'finished',
 'finish_time': datetime.datetime(2015, 6, 3, 13, 47, 48, 274872),
 'log_count/DEBUG': 4,
 'log_count/INFO': 7,
 'response_received_count': 1,
 'scheduler/dequeued': 1,
 'scheduler/dequeued/memory': 1,
 'scheduler/enqueued': 1,
 'scheduler/enqueued/memory': 1,
 'start_time': datetime.datetime(2015, 6, 3, 13, 47, 47, 817479)}

Our scraper parsed one page in about a second. We can also see the logging from our
parse method. Cool! We successfully defined our first item and class and were able to
set them up and run them.

Our next step is actually parsing the page and pulling out the content. Let’s try out
another built-in feature, the Scrapy shell. It is similar to our Python or command-line
shell, but with all the available spider commands. With the shell, it’s very easy to
investigate the page and determine how to get to page content. To launch a Scrapy
shell, simply run:

scrapy shell

You should see a listing of available options or functions you can call. One of them
should be fetch. Let’s test it out:

fetch('http://www.emoji-cheat-sheet.com/')

You now should see some output similar to your scraping output. It will have some
message indicating that the URL was crawled, then give you a new listing with objects
available to you. One of them is the response object from the request. The response
is the same response object your parse method will use. Let’s see if we can determine
some of the ways to interact with the response object:

response.url
response.status
response.headers

Each of these should return some data. The url is the same URL we used to write our
log message. The status tells us the HTTP status code of the response. The headers
should give us a dictionary of the headers the server returned with the response.

Spidering the Web | 337

www.it-ebooks.info

http://www.it-ebooks.info/

1 If you have IPython installed, you should also be seeing this tab completion on most Python shells you use. If
you aren’t seeing this, you can add a .pythonrc file to your computer and set it as your PYTHONSTARTUP
environment.

If you type response. and hit Tab, you should see the full list of
methods and attributes available with your response object. You
can also do this with any other Python object in your IPython ter‐
minal.1

Each response object will also have an xpath and a css method. These are similar to
the selectors we have been working with throughout this chapter and in Chapter 11.
As you may have already guessed, xpath expects you to send an XPath string and css
expects a CSS selector. Let’s have a look at selecting using the XPath we’ve already
written for this page:

response.xpath('//h2|//h3')

When you run that command, you should see a list similar to this:

[<Selector xpath='//h2|//h3' data=u'<h2>People</h2>'>,
 <Selector xpath='//h2|//h3' data=u'<h2>Nature</h2>'>,
 <Selector xpath='//h2|//h3' data=u'<h2>Objects</h2>'>,
 <Selector xpath='//h2|//h3' data=u'<h2>Places</h2>'>,
 <Selector xpath='//h2|//h3' data=u'<h2>Symbols</h2>'>,
 <Selector xpath='//h2|//h3' data=u'<h3>Campfire also supports a few sounds<'>]

Now let’s see if we can read just the text content from those headers. When using
Scrapy, you’ll want to extract the exact element you are looking for; there are (as of
the writing of this book) no get or text_content methods. Let’s see if we can use our
XPath knowledge to select the text from the headers:

for header in response.xpath('//h2|//h3'):
 print header.xpath('text()').extract()

You should get output similar to this:

[u'People']
[u'Nature']
[u'Objects']
[u'Places']
[u'Symbols']
[u'Campfire also supports a few sounds']

We can see our extract method will return a list of the matching elements. We can
use the @ symbol to represent attributes and text() to pull out text. We’ll need to
rewrite some of the code, but we should now be able to use a lot of the same LXML
logic we wrote in “A Case for XPath” on page 304:

338 | Chapter 12: Advanced Web Scraping: Screen Scrapers and Spiders

www.it-ebooks.info

http://bit.ly/py_tab_completion
http://www.it-ebooks.info/

import scrapy
from scrapyspider.items import EmojiSpiderItem

class EmoSpider(scrapy.Spider):
 name = 'emo'
 allowed_domains = ['emoji-cheat-sheet.com']
 start_urls = [
 'http://www.emoji-cheat-sheet.com/',
]

 def parse(self, response):
 headers = response.xpath('//h2|//h3')
 lists = response.xpath('//ul')
 all_items = []
 for header, list_cont in zip(headers, lists):
 section = header.xpath('text()').extract()[0]
 for li in list_cont.xpath('li'):
 item = EmojiSpiderItem()
 item['section'] = section
 spans = li.xpath('div/span')
 if len(spans):
 link = spans[0].xpath('@data-src').extract()
 if link:
 item['emoji_link'] = response.url + link[0]
 handle_code = spans[1].xpath('text()').extract()
 else:
 handle_code = li.xpath('div/text()').extract()
 if handle_code:
 item['emoji_handle'] = handle_code[0]
 all_items.append(item)
 return all_items

Because we know we are going to have more than one item per page, this line
starts a list at the beginning of the parse method to keep a list of found items as
we go through the page.

Instead of calling header.text as we do in the LXML script, this line locates the
text section (.xpath("text()")) and extracts it using the extract function.
Because we know that method will return a list, this code selects the first and
only item for each list and sets it equal to section.

This line defines the item. For each list item, we create a new EmojiSpiderItem
object by calling the class name with empty parentheses.

To extract data attributes, this line uses the XPath @ selector. This code selects the
first span and extracts the @data-src attribute, which will return a list.

Spidering the Web | 339

www.it-ebooks.info

http://www.it-ebooks.info/

To create our full path emoji_link attribute, this line takes the response URL and
adds the first list item from the @data-src attribute. To set item fields, we use
dictionary syntax, setting the keys (i.e., field names) equal to the values. This line
will not execute if there is no @data-src from the previous code.

To combine some code and not repeat ourselves, this code finds the handle
strings for the emojis and sounds, and sets the emoji_handle field.

At the end of each loop for the list elements, this line appends the new item to
our all_items list.

At the end of our parse method, this line returns the list of all found items.
Scrapy will use a returned item or list of items to proceed with the scraping (usu‐
ally by saving, cleaning, or outputting the data in a format we can read and use).

We have now added in our Scrapy extract calls and identified more specifically the
text and attributes to pull from the page. We removed some of the None logic, as our
Scrapy item will automatically know which fields it has and doesn’t have. For this rea‐
son, if we export the output to CSV or JSON, it will show both null and found values.
Now that we’ve updated the code to work with Scrapy, let’s run it by calling our crawl
method again:

scrapy crawl emo

You should see some output similar to our first scrape, except this time with quite a
few more lines! Scrapy will log every item it finds as it parses the Web. At the end,
you’ll see the same summary output showing errors, debugging, and how many items
were scraped:

2015-06-03 18:13:51+0200 [emo] DEBUG: Scraped from
 <200 http://www.emoji-cheat-sheet.com/>
 {'emoji_handle': u'/play butts',
 'section': u'Campfire also supports a few sounds'}
2015-06-03 18:13:51+0200 [emo] INFO: Closing spider (finished)
2015-06-03 18:13:51+0200 [emo] INFO: Dumping Scrapy stats:
 {'downloader/request_bytes': 224,
 'downloader/request_count': 1,
 'downloader/request_method_count/GET': 1,
 'downloader/response_bytes': 143742,
 'downloader/response_count': 1,
 'downloader/response_status_count/200': 1,
 'finish_reason': 'finished',
 'finish_time': datetime.datetime(2015, 6, 3, 16, 13, 51, 803765),
 'item_scraped_count': 924,
 'log_count/DEBUG': 927,
 'log_count/INFO': 7,
 'response_received_count': 1,
 'scheduler/dequeued': 1,

340 | Chapter 12: Advanced Web Scraping: Screen Scrapers and Spiders

www.it-ebooks.info

http://www.it-ebooks.info/

 'scheduler/dequeued/memory': 1,
 'scheduler/enqueued': 1,
 'scheduler/enqueued/memory': 1,
 'start_time': datetime.datetime(2015, 6, 3, 16, 13, 50, 857193)}
2015-06-03 18:13:51+0200 [emo] INFO: Spider closed (finished)

Scrapy helped us parse more than 900 items in about a second—impressive! As we
look through our logs, we see all of our items have been parsed and added. We did
not experience any errors; if there were any, we would see a count for them in the
final output similar to the DEBUG and INFO output lines.

We don’t yet have an actual file or output from our script. We can set one using a
built-in command-line argument. Try rerunning the crawl with some extra options:

scrapy crawl emo -o items.csv

At the end of the scrape you should have an items.csv file in your project root direc‐
tory. If you open it, you should see all of your data has been exported into CSV for‐
mat. You can also export .json and .xml files, so feel free to try those out by simply
changing the filename.

Congratulations, you’ve built your first web spider! With only a few files and less than
50 lines of code you’re able to parse an entire page—more than 900 items—in less
than a minute and output those findings to a simple-to-read and easy-to-share for‐
mat. Scrapy, as you can see, is a truly powerful and incredibly useful tool.

Crawling Whole Websites with Scrapy
We’ve explored using the Scrapy shell and crawl for a normal page, but how can we
use the power and speed of Scrapy to crawl an entire website? To investigate the
CrawlSpider’s capabilities, we must first determine what to crawl. Let’s try finding
Python packages related to scraping on the PyPI home page. To begin, take a look at
the page and figure out what data we want. Performing a quick search for the term
“scrape” shows a whole list of results and each of those pages has more information,
including documentation, a link to the related package, a list of what Python versions
are supported, and the number of recent downloads.

We can build an item model around that data. Normally, we would start a new project
for each scraper if it is not related to the same data; but for ease of use, we’ll use the
same folder as for our emoji scraper. Begin by modifying the items.py file:

Spidering the Web | 341

www.it-ebooks.info

http://pypi.python.org
http://bit.ly/scrape_packages
http://bit.ly/scrape_packages
http://www.it-ebooks.info/

-*- coding: utf-8 -*-

Define here the models for your scraped items
#
See documentation in:
http://doc.scrapy.org/en/latest/topics/items.html

import scrapy

class EmojiSpiderItem(scrapy.Item):
 emoji_handle = scrapy.Field()
 emoji_link = scrapy.Field()
 section = scrapy.Field()

class PythonPackageItem(scrapy.Item):
 package_name = scrapy.Field()
 version_number = scrapy.Field()
 package_downloads = scrapy.Field()
 package_page = scrapy.Field()
 package_short_description = scrapy.Field()
 home_page = scrapy.Field()
 python_versions = scrapy.Field()
 last_month_downloads = scrapy.Field()

We define our new item class directly underneath our old class. You should keep a
few lines of space in between the classes so it’s easy to read the file and see class dis‐
tinctions. Here, we added some fields we are interested in from the Python package
pages, including how many downloads there have been in the last month, the package
home page, what Python versions it supports, and the version number.

With our items defined, we can use the Scrapy shell to investigate content on the
Scrapely page. Scrapely is a project from the authors of Scrapy that uses Python to
screen-read HTML. If you haven’t already, we also recommend installing IPython,
which will ensure your input and output looks like ours and give you some extra shell
tools. In the shell (started using scrapy shell), we need to first fetch content using
the following command:

fetch('https://pypi.python.org/pypi/scrapely/0.12.0')

We can try fetching the version number from the breadcrumbs at the top of the page.
We see they are in a div with the ID "breadcrumb". We can write some XPath to find
that:

In [2]: response.xpath('//div[@id="breadcrumb"]')
Out[2]: [<Selector xpath='//div[@id="breadcrumb"]'
 data=u'<div id="breadcrumb">\n <a h'>]

The IPython Out message shows we have properly found the breadcrumb div. By
inspecting the element in the browser’s inspection tab, we see the text is located in an

342 | Chapter 12: Advanced Web Scraping: Screen Scrapers and Spiders

www.it-ebooks.info

http://www.it-ebooks.info/

anchor tag in that div. We need to be specific with XPath, so we tell it to find the text
inside the child anchor tag with the following line of code:

In [3]: response.xpath('//div[@id="breadcrumb"]/a/text()')
Out[3]:
[<Selector xpath='//div[@id="breadcrumb"]/a/text()' data=u'Package Index'>,
 <Selector xpath='//div[@id="breadcrumb"]/a/text()' data=u'scrapely'>,
 <Selector xpath='//div[@id="breadcrumb"]/a/text()' data=u'0.12.0'>]

We can now see the version number is in the last of those divs, and we can grab the
last one when we extract. We can also do some testing and ensure the version data is a
number using regex (see “RegEx Matching” on page 181) or testing with Python’s
is_digit (like we did back in “Finding Outliers and Bad Data” on page 167).

Now let’s take a look at how to grab a slightly more complex part of the page: last
month’s downloads. If you inspect the element in your browser, you’ll see it’s in an
unordered list in a list item in a span. You’ll notice none of those elements have a CSS
ID or class. You’ll also notice the span does not include the actual word “month” (for
easy searching). Let’s see if we can get a selector that works:

In [4]: response.xpath('//li[contains(text(), "month")]')
Out[4]: []

Bummer, no dice on finding it easily using an XPath text search. However, one nice
trick you’ll notice with XPath is sometimes it behaves differently if you change the
query slightly and parse something similar. Try running this command:

In [5]: response.xpath('//li/text()[contains(., "month")]')
Out[5]: [<Selector xpath='//li/text()[contains(., "month")]'
 data=u' downloads in the last month\n '>]

See? How come one works and not the other? Because the element is a span inside an
li element and the other text sits after the span, it’s confusing the hierarchy of the
XPath pattern search. The messier the page structure, the more difficult it is to write a
perfect selector. What we asked for in the second pattern is a bit different—we said
“show me text residing in an li that has the word month somewhere in it,” rather
than “show me an li that has the text month in it.” It’s a small difference, but when
dealing with messy HTML, it can be useful to work around difficult sections of con‐
tent by trying several selectors.

But what we really want is the span containing the download number. We can use the
beauty of XPath relationships to navigate up the chain and locate that span. Try out
this code:

In [6]: response.xpath('//li/text()[contains(., "month")]/..')
Out[6]: [<Selector xpath='//li/text()[contains(., "month")]/..' data=u'\n
 668 downloads in t'>]

Spidering the Web | 343

www.it-ebooks.info

http://www.it-ebooks.info/

By using the .. operator, we have essentially moved back up to the parent node, so
now we have both the text after the span and the span itself. Our final step will be
selecting the span, so we don’t have to worry about stripping text:

In [7]: response.xpath('//li/text()[contains(., "month")]/../span/text()')
Out[7]: [<Selector xpath='//li/text()[contains(., "month")]/../span/text()'
 data=u'668'>]

Super! Now we have the number we were looking for, and it should work across all of
our pages as we’ve based it on page hierarchy and not on attempting to “guess” where
the content might lie.

Use the shell to debug and locate the elements you want using your
XPath skills. As you gain experience, it will become easier to write
selectors that work on the first try, so we encourage you to write
more web scrapers and experiment by testing many different
selectors.

We’ll begin with a scraper we know properly parses the Scrapely page using the
Spider class and then transform it to use the CrawlSpider class. It’s always good to
approach two- or three-factor problems step by step, successfully completing one part
of the task before moving on to the next one. Because we have to debug two parts
with a CrawlSpider (the crawl rules to find matching pages and scraping the page
itself), it’s good to test it by first ensuring one of the parts works. We recommend
starting by building a scraper which works on one or two of the matching pages and
then writing the crawl rules to test the crawling logic.

Here’s a look at our completed Spider for the Python package pages. You will want to
include it as a new file in your spiders folder, alongside your emo_spider.py file. We
have called it package_spider.py:

import scrapy
from scrapyspider.items import PythonPackageItem

class PackageSpider(scrapy.Spider):
 name = 'package'
 allowed_domains = ['pypi.python.org']
 start_urls = [
 'https://pypi.python.org/pypi/scrapely/0.12.0',
 'https://pypi.python.org/pypi/dc-campaign-finance-scrapers/0.5.1',
]

 def parse(self, response):
 item = PythonPackageItem()
 item['package_page'] = response.url
 item['package_name'] = response.xpath(
 '//div[@class="section"]/h1/text()').extract()

344 | Chapter 12: Advanced Web Scraping: Screen Scrapers and Spiders

www.it-ebooks.info

http://www.it-ebooks.info/

 item['package_short_description'] = response.xpath(
 '//meta[@name="description"]/@content').extract()
 item['home_page'] = response.xpath(
 '//li[contains(strong, "Home Page:")]/a/@href').extract()
 item['python_versions'] = []
 versions = response.xpath(
 '//li/a[contains(text(), ":: Python ::")]/text()').extract()
 for v in versions:
 version_number = v.split("::")[-1]
 item['python_versions'].append(version_number.strip())
 item['last_month_downloads'] = response.xpath(
 '//li/text()[contains(., "month")]/../span/text()').extract()
 item['package_downloads'] = response.xpath(
 '//table/tr/td/span/a[contains(@href,"pypi.python.org")]/@href'
).extract()
 return item

This line adds an extra URL we haven’t investigated. Using more than one URL is
a great way to quickly see if you have clean and reusable code as you move from a
Spider to a CrawlSpider.

For this scraper, we only have one item per page. This line creates the item at the
beginning of our parse method.

One great way to get easy-to-read descriptions of pages while you are parsing is
to learn a bit about search engine optimization (SEO). Most sites will create short
descriptions, keywords, titles, and other meta tags for Facebook, Pinterest, and
other sharing sites. This line pulls in that description for our data collection.

The package’s “Home Page” URL is located in a strong tag in an li. Once we find
that element, this line selects just the link from the anchor element.

If we take a look at the version number links, we see they come in a list item that
uses :: to separate Python and the version number. The version numbers always
come last, so this line splits our string using :: as the delimiter and takes the last
element.

This line appends the version text (stripped of extra spaces) to the Python ver‐
sion array. The item’s python_versions key will now hold all Python versions.

We can see in the table that links to package downloads rather than their MD5
checksums use the pypi.python.org domain. This line tests to make sure the link
has the proper domain and grabs only those links that do.

At the end of our parse method, Scrapy expects us to return an item (or a list of
items). This line returns the item.

Spidering the Web | 345

www.it-ebooks.info

http://www.it-ebooks.info/

When you ran the code (scrapy crawl package) you should have gotten two items
and no errors. You will notice, however, we have varying data. For example, our pack‐
age data has no good listing of supported Python versions for each download. If we
wanted to, we could parse from the PyVersion field in the table and match it with each
download. How might you go about doing that? (Hint: it’s in the third column of each
table row, and XPath allows you to pass element indexes.) We also notice the data is a
bit messy, as the following output (formatted to fit the page; your output will look a
little different!) shows:

2015-09-10 08:19:34+0200 [package_test] DEBUG: Scraped from
 <200 https://pypi.python.org/pypi/scrapely/0.12.0>
 {'home_page': [u'http://github.com/scrapy/scrapely'],
 'last_month_downloads': [u'668'],
 'package_downloads':
 [u'https://pypi.python.org/packages/2.7/s/' + \
 'scrapely/scrapely-0.12.0-py2-none-any.whl',
 u'https://pypi.python.org/packages/source/s/' + \
 'scrapely/scrapely-0.12.0.tar.gz'],
 'package_name': [u'scrapely 0.12.0'],
 'package_page': 'https://pypi.python.org/pypi/scrapely/0.12.0',
 'package_short_description':
 [u'A pure-python HTML screen-scraping library'],
 'python_versions': [u'2.6', u'2.7']}

We have a few fields where we might expect a string or integer, but instead we have an
array of strings. Let’s build a helper method to clean up our data before we define our
crawl spider rules:

import scrapy
from scrapyspider.items import PythonPackageItem

class PackageSpider(scrapy.Spider):
 name = 'package'
 allowed_domains = ['pypi.python.org']
 start_urls = [
 'https://pypi.python.org/pypi/scrapely/0.12.0',
 'https://pypi.python.org/pypi/dc-campaign-finance-scrapers/0.5.1',
]

 def grab_data(self, response, xpath_sel):
 data = response.xpath(xpath_sel).extract()
 if len(data) > 1:
 return data
 elif len(data) == 1:
 if data[0].isdigit():
 return int(data[0])
 return data[0]
 return []

 def parse(self, response):

346 | Chapter 12: Advanced Web Scraping: Screen Scrapers and Spiders

www.it-ebooks.info

http://www.it-ebooks.info/

 item = PythonPackageItem()
 item['package_page'] = response.url
 item['package_name'] = self.grab_data(
 response, '//div[@class="section"]/h1/text()')
 item['package_short_description'] = self.grab_data(
 response, '//meta[@name="description"]/@content')
 item['home_page'] = self.grab_data(
 response, '//li[contains(strong, "Home Page:")]/a/@href')
 item['python_versions'] = []
 versions = self.grab_data(
 response, '//li/a[contains(text(), ":: Python ::")]/text()')
 for v in versions:
 item['python_versions'].append(v.split("::")[-1].strip())
 item['last_month_downloads'] = self.grab_data(
 response, '//li/text()[contains(., "month")]/../span/text()')
 item['package_downloads'] = self.grab_data(
 response,
 '//table/tr/td/span/a[contains(@href,"pypi.python.org")]/@href')
 return item

This line defines a new method to take our self object (so the spider can then
call it like a normal method), our response object, and the long XPath selector to
find the content.

This line uses the new function variables to extract the data.

If the length of the data is greater than 1, this line returns the list. We probably
want all of the data, so we return it as is.

If the length of the data is equal to 1 and the data is a digit, this line returns the
integer. This would be the case for our downloads number.

If the length of the data is equal to 1 and is not a digit, this line returns just the
data. This will match strings containing links and simple text.

If this function hasn’t returned yet, this line returns an empty list. We use a list
here because you would expect extract to return empty lists if no data was
found. If you used None types or empty strings, you might have to modify other
code to save it to a CSV.

This line calls our new function and invokes self.grab_data with the argu‐
ments: the response object and the XPath selection string. r use the other built-in
export features.

Now we have pretty clean data and code and are repeating ourselves less often. We
could further improve it, but for the sake of your eyes not rolling to the back of your
head, let’s move on to defining our crawling rules. Crawling rules, denoted by regular

Spidering the Web | 347

www.it-ebooks.info

http://www.it-ebooks.info/

expressions, tell your spider where to go by defining what types of URLs to follow
from what parts of the page. (Isn’t it great that we covered regexes in Chapter 7?
You’re a pro now!) If we take a look at the package links (https://pypi.python.org/pypi/
dc-campaign-finance-scrapers/0.5.1 and https://pypi.python.org/pypi/scrapely/0.12.0),
we can see some similarities:

• They both have the same domain, pypi.python.org, and they both use https.
• They both have the same pattern for the path in the URL: /pypi/

<name_of_the_library>/<version_number>.
• The name of the library uses lowercase letters and dashes, and the version num‐

ber is digits and periods.

We can use these similarities to define regex rules. Before we write them in our spi‐
der, let’s try them in our Python console:

import re

urls = [
 'https://pypi.python.org/pypi/scrapely/0.12.0',
 'https://pypi.python.org/pypi/dc-campaign-finance-scrapers/0.5.1',
]

to_match = 'https://pypi.python.org/pypi/[\w-]+/[\d\.]+'

for u in urls:
 if re.match(to_match, u):
 print re.match(to_match, u).group()

This line finds a link with https, the pypi.python.org domain, and the path from
our investigation. The first block is pypi, the next block is lowercase word-like
text with - symbols (matched easily with [\w-]+), and the last part looks for
numbers with or without periods ([\d\.]+).

This line prints out the matching group. We are using the regex match method,
because that is the regex Scrapy crawl spiders use.

We have a match (two, to be exact!). Now, let’s have one last look at where we need to
start. What the Scrapy crawl spider will do is look at a list of start URLs and use those
pages to find URLs to follow. If we take another look at our search results page, we
notice the page uses relative URLs, so we only need to match the URL path. We also
see the links are all in a table, so we can restrict where Scrapy looks to find links to
crawl. With this knowledge, let’s update the file by adding the crawl rules:

from scrapy.contrib.spiders import CrawlSpider, Rule
from scrapy.contrib.linkextractors import LinkExtractor
from scrapyspider.items import PythonPackageItem

348 | Chapter 12: Advanced Web Scraping: Screen Scrapers and Spiders

www.it-ebooks.info

https://pypi.python.org/pypi/dc-campaign-finance-scrapers/0.5.1
https://pypi.python.org/pypi/dc-campaign-finance-scrapers/0.5.1
https://pypi.python.org/pypi/scrapely/0.12.0
http://bit.ly/scrape_packages
http://www.it-ebooks.info/

class PackageSpider(CrawlSpider):
 name = 'package'
 allowed_domains = ['pypi.python.org']
 start_urls = [
 'https://pypi.python.org/pypi?%3A' + \
 'action=search&term=scrape&submit=search',
 'https://pypi.python.org/pypi?%3A' + \
 'action=search&term=scraping&submit=search',
]

 rules = (
 Rule(LinkExtractor(
 allow=['/pypi/[\w-]+/[\d\.]+',],
 restrict_xpaths=['//table/tr/td',],
),
 follow=True,
 callback='parse_package',
),
)

 def grab_data(self, response, xpath_sel):
 data = response.xpath(xpath_sel).extract()
 if len(data) > 1:
 return data
 elif len(data) == 1:
 if data[0].isdigit():
 return int(data[0])
 return data[0]
 return []

 def parse_package(self, response):
 item = PythonPackageItem()
 item['package_page'] = response.url
 item['package_name'] = self.grab_data(
 response, '//div[@class="section"]/h1/text()')
 item['package_short_description'] = self.grab_data(
 response, '//meta[@name="description"]/@content')
 item['home_page'] = self.grab_data(
 response, '//li[contains(strong, "Home Page:")]/a/@href')
 item['python_versions'] = []
 versions = self.grab_data(
 response, '//li/a[contains(text(), ":: Python ::")]/text()')
 for v in versions:
 version = v.split("::")[-1]
 item['python_versions'].append(version.strip())
 item['last_month_downloads'] = self.grab_data(
 response, '//li/text()[contains(., "month")]/../span/text()')
 item['package_downloads'] = self.grab_data(
 response,
 '//table/tr/td/span/a[contains(@href,"pypi.python.org")]/@href')
 return item

Spidering the Web | 349

www.it-ebooks.info

http://www.it-ebooks.info/

This line imports both our CrawlSpider class and our Rule class, as we need
them both for our first crawl spider.

This line imports our LinkExtractor. The default link extractor uses LXML (we
know how to write for that!).

This line redefines our Spider so it inherits from the CrawlSpider class. Because
we’re changing this inheritance, we must define a rules attribute.

We include search pages for the terms scrape and scraping to see if we can find
even more Python packages. You can add a long list here if you have different
starting points where you’d like your spider to begin searching.

This line sets allow to match the regex for the links on the page. Because we only
need relative links, we start with just the path. allow accepts a list, so you could
add more than one allow rule here if you have more than one type of URL you
are looking to match.

This line restricts our crawl spider to the results table. This means it is only going
to look for matching links in columns inside rows of a table.

This tells the rule to follow (i.e., load) the matching links. Sometimes you might
have pages you want to parse to give you content but whose links you don’t need
to follow. If you want the spider to follow the page links and open them, you
need to use follow=True.

Gives the rule a callback and renames the parse method to ensure we don’t mess
with the normal parsing methods Scrapy CrawlSpiders use that are different
from the Scrapy Spiders. Now our parse method is called parse_package, and
the spider will call this method once it has followed a matching URL to a page we
want to scrape.

You can run the crawl spider the same way you would a normal spider:

scrapy crawl package

You’ve officially built your first crawl spider! Are there things that can be improved?
There is one easy-to-fix bug we’ve left in this code. Can you spot what it is, and how
to fix it? (Hint: look at your Python versions and see what’s going on, then take a look
at the way versions are expected to be returned (i.e., always in a list) compared to how
we might return some of them with grab_data.) See if you can fix this issue in the
crawl spider script. If you get stuck, you can check the book’s repository for the com‐
pletely fixed code.

350 | Chapter 12: Advanced Web Scraping: Screen Scrapers and Spiders

www.it-ebooks.info

https://github.com/jackiekazil/data-wrangling
http://www.it-ebooks.info/

Scrapy is a powerful, fast, and easy-to-configure tool. There is a lot more to explore,
which you can do by reading the library’s excellent documentation. It’s fairly easy to
configure your scripts to use databases and special feed extractors, and have them all
running on your own server using Scrapyd. We hope this was the first of many Scrapy
projects to come!

You now understand screen readers, browser readers, and spiders. Let’s review some
other things you should know as you build more complex web scrapers.

Networks: How the Internet Works and Why It’s Breaking
Your Script
Depending on how often your scraping script runs and how essential it is that every
scrape works, you will probably run into network problems. Yes, the Internet is trying
to break your script. Why? Because it assumes if you actually care, you will retry.
Dropped connections, proxy problems, and timeout issues are rife within the web
scraping world. However, there are a few things you can do to mitigate these issues.

In your browser, if something doesn’t load properly, you merely hit refresh, sending
another request immediately. For your scraper, you can mimic this type of behavior.
If you are using Selenium, it’s incredibly simple to refresh your content. The Selenium
webdriver object has a refresh function just like your browser. If you’ve just filled
out a form, you might need to resubmit the form to move to the next page (this is
similar to how your browser behaves at times). If you need to interact with an alert or
pop-up, Selenium gives you the tools necessary to accept or decline the message.

If you are using Scrapy, it has built-in retry middleware. To enable it, you merely need
to add it to the list of middleware in your project’s settings.py file. The middleware
expects you to set some default values in your settings so it knows what HTTP
response codes to retry (e.g., should it retry only 500s?) as well as how many retries to
pursue.

If you don’t specify those values, it will still work with the default
options listed in the documentation. We recommend starting with
10 retries if you are seeing network errors and then either increas‐
ing the download wait time (another global settings variable) or
checking the error codes you are receiving to see if you are over‐
loading the site with your script.

If you are using your own Python script with LXML or BeautifulSoup, it’s a good idea
to catch those errors and determine a good method to deal with them. Most of the
time, you’ll notice a preponderance of urllib2.HTTPError exceptions or, if you are

Networks: How the Internet Works and Why It’s Breaking Your Script | 351

www.it-ebooks.info

http://doc.scrapy.org/en/latest/
http://scrapyd.readthedocs.org/en/latest/
http://bit.ly/selenium_common_alert
http://bit.ly/downloader_middleware
http://bit.ly/httperror_exceptions
http://www.it-ebooks.info/

using requests, your code will not load content and fail. Using a try...except block
in Python, your code could look something like this:

import requests
import urllib2

resp = requests.get('http://sisinmaru.blog17.fc2.com/')

if resp.status_code == 404:
 print 'Oh no!!! We cannot find Maru!!'
elif resp.status_code == 500:
 print 'Oh no!!! It seems Maru might be overloaded.'
elif resp.status_code in [403, 401]:
 print 'Oh no!! You cannot have any Maru!'

try:
 resp = urllib2.urlopen('http://sisinmaru.blog17.fc2.com/')
except urllib2.URLError:
 print 'Oh no!!! We cannot find Maru!!'
except urllib2.HTTPError, err:
 if err.code == 500:
 print 'Oh no!!! It seems Maru might be overloaded.'
 elif err.code in [403, 401]:
 print 'Oh no!! You cannot have any Maru!'
 else:
 print 'No Maru for you! %s' % err.code
except Exception as e:
 print e

When using the requests library to find network errors, check the status_code
of your response. This attribute returns an integer representing the code received
in the HTTP response. This line tests for 404 errors.

If using urllib2, put your request in a try statement (as on this line).

One of the exceptions we might see from urllib2 is the URLError. Writing a
catch is a good idea. If it can’t resolve the domain, it will probably throw this
error.

One of the other exceptions we might see is an HTTPError. Any bad response
linked to HTTP request errors will raise this error. By adding the comma and err
here, we catch the error and put it in the variable err so we can log our errors.

Now that we have caught the error and set it equal to err in the previous line of
code, this line tests the code attribute to see the HTTP error code.

352 | Chapter 12: Advanced Web Scraping: Screen Scrapers and Spiders

www.it-ebooks.info

http://www.it-ebooks.info/

For all other HTTP errors, this line uses an else to show the code of the error by
formatting it into a string.

This line catches any other errors we might run into and shows the error. Here
we again assign the exception to e and print it so we can read the exception
messages.

Intelligently designing your scripts to be as failure-resistant as possible is an impor‐
tant step we’ll talk more about in Chapter 14, and ensuring you have proper try...
except blocks throughout your code to account for errors is one important part of
that process. Other than HTTP errors, sometimes the page takes too long to load. For
our scraper, we might adjust the timeout if we find we are getting slow responses or
experiencing latency problems.

What is latency? In a networking sense, it’s the amount of time it
takes for data to be sent from one place to another. Round-trip
latency is the time it takes to send a request from your computer to
the server and get a response. Latency happens because data has to
be transferred, sometimes thousands of miles, to complete your
request.

It’s good to think about latency when writing and scaling your script. If you have a
script connecting to a site hosted in another country, you are going to experience net‐
work latency. You will likely want to adjust your timeouts accordingly, or set up a
server closer to your desired endpoint. If you need to add timeouts to your Selenium
and Ghost.py scripts, you can do so directly when starting your scraping. For Sele‐
nium, use the set_page_load_timeout method or use implicit or explicit waits,
where the browser will wait for particular sections of code to load. For Ghost.py, you
may pass the wait_timeout argument as defined in the Ghost class documentation.

For Scrapy, the asynchronous nature of the scrapers and ability to retry a particular
URL numerous times makes timeouts a somewhat trivial issue. You can, of course,
alter the timeout directly in Scrapy settings using the DOWNLOAD_TIMEOUT setting.

If you are writing your own Python script and using LXML or BeautifulSoup to parse
the page, adding a timeout to your calls will be your responsibility. If you use
requests or urllib2, you can do so directly as you call the page. In requests, you
simply add it as an argument to your get request. For urllib2, you’ll want to pass the
timeout as an argument in your urlopen method.

If you are experiencing continuous network-related issues, and it’s essential that your
script run on a steady schedule, we recommend setting up some logging, attempting
to run it on another network (i.e., not your home network, to see if these are issues

Networks: How the Internet Works and Why It’s Breaking Your Script | 353

www.it-ebooks.info

http://bit.ly/set_page_load_timeout
http://bit.ly/selenium_waits_docs
http://bit.ly/ghost_class
http://doc.scrapy.org/en/latest/topics/settings.html#download-timeout
http://bit.ly/quickstart_timeouts
http://bit.ly/urlopen
http://www.it-ebooks.info/

with your home Internet connection), and testing whether running it at non-peak
hours helps.

Does it matter whether the script updates every day at 5 p.m. or at 5
a.m.? It’s likely 5 p.m. will be pretty busy on your local ISP’s net‐
work, while 5 a.m. will probably be quiet. If you notice it’s hard to
do anything on your home network at those peak times, it’s highly
unlikely your script will be able to do anything then either!

Aside from network problems, you’ll probably find other issues that break your
scraping script—like the fact that the Internet is a changing thing.

The Changing Web (or Why Your Script Broke)
As you know, web redesigns, updated content management systems, and changes in
page structure (a new ad system, a new referral network, etc.) are a normal part of the
Internet landscape. The Web grows and changes. For that reason, your web scraping
scripts will break. The good news is, there are a lot of sites that only change annually,
or once every few years. There are also some changes that may not even affect page
structure (sometimes style updates or ad updates don’t change the content and struc‐
ture of the code). Don’t lose all hope; it’s possible your script will work for quite some
time!

However, we don’t want to give you false hope. Your script will break eventually. One
day, you’ll go to run it and you will realize it no longer works. When this happens,
give yourself a big hug, pour yourself some tea or coffee, and begin again.

Now you know more about how to examine the content on a site and figure out the
most useful bits for your reporting. You already have quite a lot of code written which
will still mainly work. You are in a good debugging stage, and you now have tons of
tools at your disposal to find that new div or table with the data you seek.

A (Few) Word(s) of Caution
When scraping the Web, it’s important to be conscientious. You should also inform
yourself about laws in your country pertaining to content on the Web. Generally, how
to be conscientious is pretty clear. Don’t take someone else’s content and use it as your
own. Don’t take content that says it’s not supposed to be shared. Don’t spam people or
websites. Don’t hack websites or maliciously scrape sites. Basically, don’t be a jerk! If
you couldn’t share with your mom or a close friend what you are doing and feel good
about yourself, don’t do it.

There are a few ways to be clear about what you are doing on the Internet. Many of
the scraping libraries allow you to send User-Agent strings. You can put your infor‐

354 | Chapter 12: Advanced Web Scraping: Screen Scrapers and Spiders

www.it-ebooks.info

http://www.it-ebooks.info/

mation or your company’s information in those strings so it’s clear who is scraping
the site. You also want to make sure to take a look at the site’s robots.txt file, which
tells web spiders what parts of the site are off-limits.

Before building a spider to traverse a site, see if the parts of the site
you are interested in are included in the Disallow section of the
robots.txt file. If they are, you should find another way to get the
data, or contact the site owner and see if they can get it to you in a
different way.

Be a force of good on the Internet and do the right thing when you build scrapers.
This means you can be proud of your work; stay out of trouble with lawyers, compa‐
nies, and the government; and freely use the information you gather.

Summary
You should now feel comfortable writing a scraper for difficult-to-parse content. You
can use Selenium or Ghost.py to open a browser, read a web page, interact with the
page, and extract data. You can use Scrapy to crawl and spider an entire domain (or
series of domains) and extract large quantities of data. You also practiced regex syntax
and wrote your own Python class (with the help of Scrapy).

On top of that, your Python code is coming along. You have explored some bash
commands. You are gaining some great experience interacting with shell scripts, and
you are well on your way to being a professional data wrangler. Table 12-2 lists the
new concepts and tools introduced in this chapter.

Summary | 355

www.it-ebooks.info

http://www.robotstxt.org/robotstxt.html
http://www.it-ebooks.info/

Table 12-2. New Python and programming concepts and libraries

Concept/
Library

Purpose

Selenium
library

Library used to interact directly with web pages and their elements using a browser of your choice, as well as
with headless browsers. Great if you need to click on elements, enter information in forms, and interact with
pages that require quite a few requests to load the content.

PhatomJS
library

JavaScript library used as a headless browser for web scraping on a server or other browserless machine. Can
also be used to write a web scraper using only JavaScript.

Ghost.py
library

Library used to interact with web pages through Qt WebKit, rather than a traditional browser. Can be used in
similar situations to where one would use a browser, with the ability to write native JavaScript.

Scrapy library Library used to spider or crawl many pages across a domain or several domains. Great if you need to
investigate more than one domain or more than one type of page to collect your data.

Scrapy crawl
rules

Crawl rules instruct your spider to match URL structures and identify parts of the page where the spider
might find such links. This enables your spider to navigate and find more content.

Finally, for scrapers, make sure you follow some basic logic (see Table 12-3).

Table 12-3. Which scraper to use

Scraper type Libraries Use case

Page-reader
scraper

BeautifulSoup,
LXML

Simple page scraping where all the data you want exists on one page loaded in one
request.

Browser-based
scraper

Selenium,
PhantomJS,
Ghost.py

Browser-based scraping where you need to interact with elements on the page or
the page requires many different requests to load.

Web spider/
crawler

Scrapy Following links across many pages or parsing similar pages in a fast and
asynchronous way. Great for if you know you need many matches across an entire
domain or series of domains.

In the next few chapters, we’ll look at expanding your web skills using APIs, as well as
scaling and automating your data. These are the final stages in bringing all of your
learning together into a series of repeatable, executable scripts—some of which run
without you having to do anything. Remember all those rote tasks you thought about
when you first started this book? Well, they are soon to be rote no more—read on!

356 | Chapter 12: Advanced Web Scraping: Screen Scrapers and Spiders

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 13

APIs

An application programming interface (API) sounds like a fancy concept, but it is
not. An API is a standardized way of sharing data on the Web. Many websites share
data through API endpoints. There are too many available APIs to list in this book,
but here are some you might find useful or interesting:

• Twitter
• US Census
• World Bank
• LinkedIn
• San Francisco Open Data

All of these are examples of APIs that return data. You make a request to the API, and
the API returns data. APIs can also serve as a way to interact with other applications.
For example, we could use the Twitter API to get data from Twitter and build another
application that interacts with Twitter (e.g., an application that posts Tweets using the
API). The Google API list is another example—most APIs allow you to interact with
the company’s services. With the LinkedIn API, you can retrieve data, but also post
updates to LinkedIn without going through the web interface. Because an API can do
many different things, it should be considered a service. For our purposes, the service
provides data.

In this chapter, you will request API data and save it to your computer. APIs usually
return JSON, XML, or CSV files, which means after the data is saved locally to your
computer, you just need to apply the skills you learned in the early chapters of this
book to parse it. The API we will be working with in this chapter is the Twitter API.

357

www.it-ebooks.info

https://dev.twitter.com/overview/api
http://www.census.gov/data/developers/data-sets.html
http://data.worldbank.org/node/9
https://developer.linkedin.com/docs/rest-api
https://data.sfgov.org/
https://developers.google.com/apis-explorer/#p/
http://www.it-ebooks.info/

We chose the Twitter API as an example for a number of reasons. First, Twitter is a
well-known platform. Second, it has a lot of data (tweets) that folks are interested in
analyzing. Finally, the Twitter API allows us to explore many API concepts, which we
will discuss along the way.

Twitter data has been used both as an informal information collection tool, like in the
One Million Tweet Map, and as a more formal research tool, such as for predicting
flu trends and detecting real-time events like earthquakes.

API Features
An API can be as simple as a data response to a request, but it’s rare to find APIs with
only that functionality. Most APIs have other useful features. These features may
include multiple API request methods (REST or streaming), data timestamps, rate
limits, data tiers, and API access objects (keys and tokens). Let’s take a look at these in
the context of the Twitter API.

REST Versus Streaming APIs
The Twitter API is available in two forms: REST and streaming. Most APIs are REST‐
ful, but some real-time services offer streaming APIs. REST stands for Representa‐
tional State Transfer and is designed to create stability in API architecture. Data from
REST APIs can be accessed using the requests library (see Chapter 11). With the
requests library, you can GET and POST web requests—which is what REST APIs use
to return matching data. In the case of Twitter, the REST API allows you to query
tweets, post tweets, and do most things Twitter allows via its website.

With a REST API, you can often (but not always) preview your
query in a browser by using the API request as a URL. If you load
the URL in your browser and it looks like a text blob, you can
install a format previewer for your browser. For example, Chrome
has plug-ins to preview JSON files in an easy-to-read way.

A streaming API runs as a real-time service and listens for data relating to your query.
When you encounter a streaming API, you will likely want to use a library built to
help manage data intake. To learn more about how Twitter’s streaming API works,
see the overview on the Twitter website.

Rate Limits
APIs often have rate limits, which restrict the amount of data a user can request over
a period of time. Rate limits are put in place by the API providers for several different
reasons. In addition to rate limiting, you may also encounter an API with limited
access to data, particularly if the data relates to business interests. For infrastructure

358 | Chapter 13: APIs

www.it-ebooks.info

http://onemilliontweetmap.com/
http://bit.ly/flu_trends_twitter
http://bit.ly/social_sensors
https://dev.twitter.com/streaming/overview
http://www.it-ebooks.info/

and customer service purposes, the API provider will want to limit the number of
requests so the servers and architecture can manage the amount of data transferred.
If everyone was allowed to have 100% of the data 100% of the time, this could cause
the API servers to crash.

If you encounter an API requiring payment for extra access, you’ll need to determine
if you can pay and how much the data is worth for your research. If you encounter an
API with rate limiting, you’ll want to determine if a subset of the data is sufficient. If
the API has rate limits, it may take you quite a long time to collect a representative
sample, so be sure to estimate the level of effort you’re willing and able to expend.

APIs will often have a rate limit for all users, as it’s easier to manage. Twitter’s API was
once limited in such a way; however, with the launch of the Streaming API, the usage
changed. Twitter’s Streaming API provides a constant stream of data, while the REST
API limits the number of requests you can make per 15-minute period. To help devel‐
opers understand the rate limits, Twitter has published a chart.

For our exercise, we will use the item called GET search/tweets. This query returns
tweets containing a certain search term. If you refer to the documentation you will
find the API returns JSON responses and is rate limited to 180 or 450 requests per 15
minutes, depending on whether you are querying the API as a user or an application.

When you save data files from API responses, you can save many
files or you can write the data to one file. You can also save the
tweet data to a database, as we covered in Chapter 6. No matter
what way you choose to save your data, ensure you do so regularly
so you don’t lose what you’ve already requested.

In Chapter 3, we processed one JSON file. If we maximize our API usage for every 15
minutes, we can collect 180 JSON files. If you hit the rate limit and need to optimize
your requests to Twitter or other APIs, read the section on “Tips to Avoid Being Rate
Limited” in Twitter’s “API Rate Limits” article.

Tiered Data Volumes
So far, we have been talking about Twitter data freely available via its API. But maybe
you want to know, how do I get all the data? In the case of Twitter, there are three
access tiers you may have heard of before: firehose, gardenhose, and Spritzer. The
spritzer is the free API. Table 13-1 describes differences between these tiers.

API Features | 359

www.it-ebooks.info

https://dev.twitter.com/rest/public/rate-limits
http://bit.ly/get_search_tweets
https://dev.twitter.com/rest/public/rate-limiting
http://www.it-ebooks.info/

Table 13-1. Twitter feed types

Feed type Coverage Availability Cost

Firehose All tweets Available through a partner - DataSift or Gnip $$$

Gardenhose 10% of all tweets New access is no longer available N/A

Spritzer 1% of tweets, or up to it Available through the public API Free

You might look at these options and think, “I need the firehose, because I have to
have it all!” But there are some things you should know before attempting to pur‐
chase access:

• The firehose is a lot of data. When handling massive data, you need to scale your
data wrangling. It will require numerous engineers and servers to even begin to
query the dataset the firehose provides.

• The firehose costs money—a few hundred thousand dollars a year. This doesn’t
include the cost of the infrastructure you need to consume it (i.e., server space
and database costs). Consuming the firehose is not something individuals do on
their own—usually, a larger company or institution supports the costs.

• Most of what you really need, you can get from the Spritzer.

We will be using the Spritzer feed, which is the free public API from Twitter, where
we can access Tweets within the bounds of the rate limits. To access this API, we will
use API keys and tokens.

API Keys and Tokens
API keys and tokens are ways of identifying applications and users. Twitter API keys
and tokens can be confusing. There are four components you need to be aware of:

API key
Identifies the application

API secret
Acts as a password for the application

Token
Identifies the user

Token secret
Acts as a password for the user

360 | Chapter 13: APIs

www.it-ebooks.info

http://datasift.com/
https://gnip.com/
http://www.it-ebooks.info/

The combination of these elements gives you access to the Twitter API. Not all APIs
have two layers of identifiers and secrets, however. Twitter is a good “best case” (i.e.,
more secure) example. In some cases, APIs will have no key or only one key.

Creating a Twitter API key and access token
Continuing our child labor research, we will collect chatter around child labor on
Twitter. Creating a Twitter API key is easy, but it requires a few steps:

1. If you don’t have a Twitter account, sign up.
2. Sign in to apps.twitter.com.
3. Click the “Create New App” button.
4. Give your application a name and description. For our example, let’s set the name

to “Child labor chatter” and the description to “Pulling down chatter around
child labor from Twitter.”

5. Give your application a website—this is the website hosting the app. The instruc‐
tions say, “If you don’t have a URL yet, just put a placeholder here but remember
to change it later.” We don’t have one, so we are also going to put the Twitter URL
in the box. Make sure you include https, like this: https://twitter.com.

6. Agree to the developer agreement, and click “Create Twitter Application.”

After you create the application, you will be taken to the application management
page. If you lose this page, you can find it by going back to the application landing
page.

At this point, you need to create a token:

1. Click on the “Keys and Access Tokens” tab. (This is where you can reset your key
as well as create an access token.)

2. Scroll to the bottom and click on “Create my access token.” Once you do this, the
page will refresh with an update at the top. If you scroll to the bottom once again,
you will see the access token.

Now you should have a consumer (API) key and a token. These are what ours look
like:

• Consumer key: 5Hqg6JTZ0cC89hUThySd5yZcL
• Consumer secret: Ncp1oi5tUPbZF19Vdp8Jp8pNHBBfPdXGFtXqoKd6Cqn87xRj0c
• Access token: 3272304896-ZTGUZZ6QsYKtZqXAVMLaJzR8qjrPW22iiu9ko4w
• Access token secret: nsNY13aPGWdm2QcgOl0qwqs5bwLBZ1iUVS2OE34QsuR4C

API Features | 361

www.it-ebooks.info

https://twitter.com/signup
https://apps.twitter.com/
https://apps.twitter.com/
https://apps.twitter.com/
http://www.it-ebooks.info/

Never share your keys or tokens with anyone! If you share your key
with a friend, they can electronically represent you. If they abuse
the system, you might lose access and be liable for their behavior.
Why did we publish ours? Well, for one, we generated new ones. In
the process of generating new keys and tokens, the one included in
this book was disabled—which is what you should do if you acci‐
dentally expose your key or token. If you need to create a new key,
go to the “Keys and Access Tokens” tab and click “Regenerate.” This
will generate a new API key and token.

Now that we have a key, let’s access the API!

A Simple Data Pull from Twitter’s REST API
With a set of keys, we can now start to access data from Twitter’s API. In this section,
we will put together a simple script to pull data from the API by passing a search
query. The script in this section is based on a snippet of Python code provided by
Twitter as an example. This code uses Python OAuth2, which is a protocol for identi‐
fying and connecting securely when using APIs.

The current best practice for authentication is to use OAuth2. Some
APIs might still use OAuth1, which will function differently and is
a deprecated protocol. If you need to use OAuth1, you can use
Requests-OAuthlib in conjunction with requests. When authenti‐
cating via an API, make sure to identify which protocol to use. If
you use the wrong one, you will receive errors when trying to con‐
nect.

To start, we need to install Python OAuth2:

pip install oauth2

Open a new file and start by importing oauth2 and assigning your key variables:

import oauth2

API_KEY = '5Hqg6JTZ0cC89hUThySd5yZcL'
API_SECRET = 'Ncp1oi5tUPbZF19Vdp8Jp8pNHBBfPdXGFtXqoKd6Cqn87xRj0c'
TOKEN_KEY = '3272304896-ZTGUZZ6QsYKtZqXAVMLaJzR8qjrPW22iiu9ko4w'
TOKEN_SECRET = 'nsNY13aPGWdm2QcgOl0qwqs5bwLBZ1iUVS2OE34QsuR4C'

Then add the function to create the OAuth connection:

def oauth_req(url, key, secret, http_method="GET", post_body="",
 http_headers=None):
 consumer = oauth2.Consumer(key=API_KEY, secret=API_SECRET)
 token = oauth2.Token(key=key, secret=secret)
 client = oauth2.Client(consumer, token)

362 | Chapter 13: APIs

www.it-ebooks.info

http://bit.ly/single-user_oauth
https://requests-oauthlib.readthedocs.org/en/latest/
http://www.it-ebooks.info/

 resp, content = client.request(url, method=http_method,
 body=post_body, headers=http_headers)
 return content

Establishes the consumer of the oauth2 object. The consumer is the owner of the
keys. This line provides the consumer with the keys so it can properly identify via
the API.

Assigns the token to the oauth2 object.

Creates the client, which consists of the consumer and token.

Using the url, which is a function argument, executes the request using the
OAuth2 client.

Returns the content received from the connection.

Now we have a function that allows us to connect to the Twitter API. However, we
need to define our URL and call the function. The Search API documentation tells us
more about what requests we want to use. Using the web interface, we can see that if
we search for #childlabor, we end up with the following URL: https://twitter.com/
search?q=%23childlabor. The documentation instructs us to reformat the URL so we
end up with the following: https://api.twitter.com/1.1/search/tweets.json?q=%23child‐
labor.

Then, we can add that URL as a variable and call the function using our previously
defined variables:

url = 'https://api.twitter.com/1.1/search/tweets.json?q=%23childlabor'
data = oauth_req(url, TOKEN_KEY, TOKEN_SECRET)

print(data)

Add a print statement at the end, so you can see the output.

When you run the script, you should see the data printed as a long JSON object. You
may remember a JSON object looks like a Python dictionary, but if you were to rerun
the script with print(type(data)), you would find out that the content is a string. At
this point we could do one of two things: we could convert the data into a dictionary
and start parsing it, or we could save the string to a file to parse later. To continue
parsing the data in the script, add import json at the top of the script. Then, at the
bottom, load the string using json and output it:

data = json.loads(data)
print(type(data))

A Simple Data Pull from Twitter’s REST API | 363

www.it-ebooks.info

https://dev.twitter.com/rest/public/search
https://twitter.com/search?q=%23childlabor
https://twitter.com/search?q=%23childlabor
http://www.it-ebooks.info/

The data variable will now return a Python dictionary. If you want to write the data
to a file and parse it later, add the following code instead:

with open('tweet_data.json', 'wb') as data_file:
 data_file.write(data)

Your final script should look like the following:

import oauth2

API_KEY = '5Hqg6JTZ0cC89hUThySd5yZcL'
API_SECRET = 'Ncp1oi5tUPbZF19Vdp8Jp8pNHBBfPdXGFtXqoKd6Cqn87xRj0c'
TOKEN_KEY = '3272304896-ZTGUZZ6QsYKtZqXAVMLaJzR8qjrPW22iiu9ko4w'
TOKEN_SECRET = 'nsNY13aPGWdm2QcgOl0qwqs5bwLBZ1iUVS2OE34QsuR4C'

def oauth_req(url, key, secret, http_method="GET", post_body="",
 http_headers=None):
 consumer = oauth2.Consumer(key=API_KEY, secret=API_SECRET)
 token = oauth2.Token(key=key, secret=secret)
 client = oauth2.Client(consumer, token)
 resp, content = client.request(url, method=http_method,
 body=post_body, headers=http_headers)
 return content

url = 'https://api.twitter.com/1.1/search/tweets.json?q=%23popeindc'
data = oauth_req(url, TOKEN_KEY, TOKEN_SECRET)

with open("data/hashchildlabor.json", "w") as data_file:
 data_file.write(data)

From here you can refer back to the section “JSON Data” on page 52 in Chapter 3 to
parse the data.

Advanced Data Collection from Twitter’s REST API
Pulling a single data file from Twitter is not terribly useful, because it only returns
about 15 tweets. We are looking to execute multiple queries in a row, so we can collect
as many tweets as possible related to our topic. We are going to use another library to
do some of the heavy lifting for us—Tweepy. Tweepy can help us manage a series of
requests as well as OAuth using Twitter. Start by installing tweepy:

pip install tweepy

At the top of your script, import tweepy and set your keys again:

import tweepy

API_KEY = '5Hqg6JTZ0cC89hUThySd5yZcL'
API_SECRET = 'Ncp1oi5tUPbZF19Vdp8Jp8pNHBBfPdXGFtXqoKd6Cqn87xRj0c'

364 | Chapter 13: APIs

www.it-ebooks.info

http://www.it-ebooks.info/

TOKEN_KEY = '3272304896-ZTGUZZ6QsYKtZqXAVMLaJzR8qjrPW22iiu9ko4w'
TOKEN_SECRET = 'nsNY13aPGWdm2QcgOl0qwqs5bwLBZ1iUVS2OE34QsuR4C'

Then pass your API key and API secret to tweepy’s OAuthHandler object, which will
manage the same OAuth protocol covered in the last example. Then set your access
token:

auth = tweepy.OAuthHandler(API_KEY, API_SECRET)
auth.set_access_token(TOKEN_KEY, TOKEN_SECRET)

Creates an object to manage the API authentication via tweepy

Sets token access

Next, pass the authorization object you just created to tweepy.API:

api = tweepy.API(auth)

The tweepy.API object can take a variety of arguments to give you customized con‐
trol over how tweepy behaves when requesting data. You can directly add retries and
delays between requests using parameters like retry_count=3, retry_delay=5.
Another useful option is wait_on_rate_limit, which will wait until the rate limit has
been lifted to make the next request. Details on all of these niceties and more are
included in the tweepy documentation.

We want to create a connection to the Twitter API using tweepy.Cursor. We can then
pass the cursor the API method to use, which is api.search, and the parameters
associated with that method:

query = '#childlabor'
cursor = tweepy.Cursor(api.search, q=query, lang="en")

Creates the query variable

Establishes the cursor with the query, and limits it to just the English language

While the term Cursor might not feel intuitive, it’s a common pro‐
gramming term in reference to database connections. Although an
API is not a database, the class name Cursor was probably adopted
from this usage. You can read more about cursors on Wikipedia.

According to tweepy’s documentation, cursor can return an iterator on a per-item or
per-page level. You can also define limits to determine how many pages or items the
cursor grabs. If you look at print(dir(cursor)), you’ll see there are three methods:
['items', 'iterator', 'pages']. A page returns a bunch of items, which are indi‐
vidual tweets from your query. For our needs, we are going to use pages.

Advanced Data Collection from Twitter’s REST API | 365

www.it-ebooks.info

http://docs.tweepy.org/en/latest/api.html
http://docs.tweepy.org/en/latest/api.html#API.search
https://en.wikipedia.org/wiki/Cursor_(databases)
http://tweepy.readthedocs.org/en/latest/api.html
http://bit.ly/tweepy_limits
http://www.it-ebooks.info/

Let’s iterate through the pages and save the data. Before we do that, we need to do two
things:

1. Add import json to the top of the script.
2. Create a directory called data in the same directory as the script. To do this, run

mkdir data on the command line.

Once you’ve done those two things, run the following code to iterate through and
save the tweets:

for page in cursor.pages():
 tweets = []
 for item in page:
 tweets.append(item._json)

with open('data/hashchildlabor.json', 'wb') as outfile:
 json.dump(tweets, outfile)

For each page returned in cursor.pages()…

Creates an empty list to store tweets.

For each item (or tweet) in a page…

Extracts the JSON tweet data and saves it to the tweets list.

Opens a file called hashchildlabor.json and saves the tweets.

You will notice not many tweets are being saved to the file. There are only 15 tweets
per page, so we’ll need to figure out a way to get more data. Options include:

• Open a file and never close it, or open a file and append the information at the
end. This will create one massive file.

• Save each page in its own file (you can use timestamps to ensure you have differ‐
ent filenames for each file).

• Create a new table in your database to save the tweets.

Creating one file is dangerous, because at any moment the process could fail and cor‐
rupt the data. Unless you have a small data pull (e.g., 1000 tweets) or are doing devel‐
opment testing, you should use one of the other options.

366 | Chapter 13: APIs

www.it-ebooks.info

http://www.it-ebooks.info/

There are a couple of ways to save the data in a new file every time, the most common
ones being creating a filename by using a date and timestamp, or just by increment‐
ing a number and appending it to the end of the filename.

We’ll go ahead and add our tweets to our simple database. To do so, we’ll use this
function:

def store_tweet(item):
 db = dataset.connect('sqlite:///data_wrangling.db')
 table = db['tweets']
 item_json = item._json.copy()
 for k, v in item_json.items():
 if isinstance(v, dict):
 item_json[k] = str(v)
 table.insert(item_json)

Creates or accesses a new table called tweets

Tests if there are any dictionaries in our tweet item values. Since SQLite doesn’t
support saving Python dictionaries, we need to convert dictionaries into strings.

Inserts the cleaned JSON item.

We will also need to add dataset into our import. We will then need to add the use of
this function where we were previously storing the pages. We’ll also want to make
sure we iterate over every tweet. Your final script should look like the following:

import json
import tweepy
import dataset

API_KEY = '5Hqg6JTZ0cC89hUThySd5yZcL'
API_SECRET = 'Ncp1oi5tUPbZF19Vdp8Jp8pNHBBfPdXGFtXqoKd6Cqn87xRj0c'
TOKEN_KEY = '3272304896-ZTGUZZ6QsYKtZqXAVMLaJzR8qjrPW22iiu9ko4w'
TOKEN_SECRET = 'nsNY13aPGWdm2QcgOl0qwqs5bwLBZ1iUVS2OE34QsuR4C'

def store_tweet(item):
 db = dataset.connect('sqlite:///data_wrangling.db')
 table = db['tweets']
 item_json = item._json.copy()
 for k, v in item_json.items():
 if isinstance(v, dict):
 item_json[k] = str(v)
 table.insert(item_json)

auth = tweepy.OAuthHandler(API_KEY, API_SECRET)
auth.set_access_token(TOKEN_KEY, TOKEN_SECRET)

api = tweepy.API(auth)

query = '#childlabor'

Advanced Data Collection from Twitter’s REST API | 367

www.it-ebooks.info

https://docs.python.org/2/library/datetime.html
http://www.it-ebooks.info/

cursor = tweepy.Cursor(api.search, q=query, lang="en")

for page in cursor.pages():
 for item in page:
 store_tweet(item)

Advanced Data Collection from Twitter’s Streaming API
Early in this chapter, we mentioned there are two types of Twitter APIs available:
REST and Streaming.

How does the Streaming API differ from the REST API? Here’s a brief rundown:

• The data is live, while the REST API returns only data that has already been
tweeted.

• Streaming APIs are less common, but will become more available in the future as
more live data is generated and exposed.

• Because up-to-date data is interesting, many people are interested in the data,
which means you can find lots of resources and help online.

Let’s create a script to collect from the Streaming API. Such a script builds on all the
concepts we’ve covered in this chapter. We’ll first add the basics—imports and keys:

from tweepy.streaming import StreamListener
from tweepy import OAuthHandler, Stream

API_KEY = '5Hqg6JTZ0cC89hUThySd5yZcL'
API_SECRET = 'Ncp1oi5tUPbZF19Vdp8Jp8pNHBBfPdXGFtXqoKd6Cqn87xRj0c'
TOKEN_KEY = '3272304896-ZTGUZZ6QsYKtZqXAVMLaJzR8qjrPW22iiu9ko4w'
TOKEN_SECRET = 'nsNY13aPGWdm2QcgOl0qwqs5bwLBZ1iUVS2OE34QsuR4C'

Imports StreamListener, which creates a streaming session and listens for
messages

Imports OAuthHandler, which we used before, and Stream, which actually han‐
dles the Twitter stream

In this script, we are doing our import statements slightly differently than we did in
the last script. Both of these are valid approaches and a matter of preference. Here’s a
quick comparison of the two approaches:

Approach 1
import tweepy
...
auth = tweepy.OAuthHandler(API_KEY, API_SECRET)

368 | Chapter 13: APIs

www.it-ebooks.info

http://www.it-ebooks.info/

Approach 2
from tweepy import OAuthHandler
...
auth = OAuthHandler(API_KEY, API_SECRET)

Usually the first approach is used when the library is not used much in the script. It is
also good when you have a longer piece of code and want to be explicit. However,
when the library is used a lot it gets tiresome to type this out: also, if the library is the
cornerstone of the script, it should be fairly obvious to people what modules or
classes are imported from the library.

Now we are going to subclass (a concept you learned about in Chapter 12) the Stream
Listener class we imported because we want to override the on_data method. To do
this, we redefine it in our new class, which we call Listener. When there is data, we
want to see it in our terminal, so we are going to add a print statement:

class Listener(StreamListener):

 def on_data(self, data):
 print data
 return True

Subclasses StreamListener.

Defines the on_data method.

Outputs tweets.

Returns True. StreamListener has an on_data method, which also returns True.
As we’re subclassing and redefining it, we must repeat the return value in the
subclassed method.

Next, add your authentication handlers:

auth = OAuthHandler(API_KEY, API_SECRET)
auth.set_access_token(TOKEN_KEY, TOKEN_SECRET)

Finally, pass the Listener and auth to the Stream and start filtering with a search
term. In this case, we are going to look at child labor because it has more traffic than
#childlabor:

stream = Stream(auth, Listener())
stream.filter(track=['child labor'])

Sets up the stream by passing auth and Listener as arguments

Filters the stream and returns only items with the terms child and labor

Your final script should look like this:

Advanced Data Collection from Twitter’s Streaming API | 369

www.it-ebooks.info

http://www.it-ebooks.info/

from tweepy.streaming import StreamListener
from tweepy import OAuthHandler, Stream

API_KEY = '5Hqg6JTZ0cC89hUThySd5yZcL'
API_SECRET = 'Ncp1oi5tUPbZF19Vdp8Jp8pNHBBfPdXGFtXqoKd6Cqn87xRj0c'
TOKEN_KEY = '3272304896-ZTGUZZ6QsYKtZqXAVMLaJzR8qjrPW22iiu9ko4w'
TOKEN_SECRET = 'nsNY13aPGWdm2QcgOl0qwqs5bwLBZ1iUVS2OE34QsuR4C'

class Listener(StreamListener):

 def on_data(self, data):
 print data
 return True

auth = OAuthHandler(API_KEY, API_SECRET)
auth.set_access_token(TOKEN_KEY, TOKEN_SECRET)

stream = Stream(auth, Listener())
stream.filter(track=['child labor'])

From here, you would add a way to save tweets to your database, file, or other storage
using your on_data method as we did earlier in the chapter.

Summary
Being able to interact with application programming interfaces is an important part
of data wrangling. In this chapter, we covered some of the API basics (see Table 13-2
for a summary) and processed data from the Twitter API.

Table 13-2. API concepts

Concept Usage

REST APIs (vs. streaming) Return data and expose static endpoints

Streaming APIS (vs. REST) Return live data to query

OAuth and OAuth2 Authenticate given a series of keys and tokens

Tiered data volumes Various layers of rate limits/availability of data; some cost $

Keys and tokens Unique IDs and secrets to identify the user and application

We reused many Python concepts we already knew and learned a few new Python
concepts in this chapter. The first was the usage of tweepy, a library to handle interac‐

370 | Chapter 13: APIs

www.it-ebooks.info

http://www.it-ebooks.info/

tions with the Twitter API. You also learned about authentication and OAuth proto‐
cols.

As an extension of interacting with an API, Chapter 14 will help you learn about
techniques enabling you to run your API scripts while you are away.

Summary | 371

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 14

Automation and Scaling

You’ve scraped large amounts of data from APIs and websites, you’ve cleaned and
organized your data, and you’ve run statistical analysis and produced visual reports.
Now it’s time to let Python take the wheel and automate your data wrangling. In this
chapter, we’ll cover how to automate your data analysis, collection, and publication.
We will learn how to create proper logging and alerting so you can fully automate
your scripts and get notifications of success, failure, and any issues your work
encounters along the way.

We will also take a look at scaling your automation using Python libraries designed to
help you execute many tasks and monitor their success and failure. We’ll analyze
some libraries and helper tools for fully scaling your data in the cloud.

Python gives us plenty of options for automation and scaling. There are some simple,
straightforward tasks that lend themselves to Python automation on almost any
machine without much setup, and there are some larger, more complex ways to auto‐
mate. We’ll cover examples of both, as well as how to scale your data automation as a
data wrangler.

Why Automate?
Automation gives you a way to easily run your scripts without needing to do so on
your local machine—or even be awake! The ability to automate means you can spend
time working on other more thought-intensive projects. If you have a well-written
script to perform data cleanup for you, you can focus on working with the data to
produce better reporting.

Here are some great examples of tasks where automation can help:

373

www.it-ebooks.info

http://www.it-ebooks.info/

• Every Tuesday a new set of analytics comes out; you compile a report and send it
to the interested parties.

• Another department or coworker needs to be able to run your reporting tool or
cleanup tool without your guidance and support.

• Once a week, you have to download, clean, and send data.
• Every time a user requests a new report, the reporting script should run and alert

the user once the report is generated.
• Once a week, you need to clean erroneous data from the database and back it up

to another location.

Each of these problems has myriad solutions, but one thing is certain: they are good
tasks to automate. They are clear in their outcomes and steps. They have a limited but
specific audience. They have a certain time or event that sets them into motion. And
they are all things you can script and run when the particular circumstances apply.

Automation is easiest when the task is clear and well defined and the outcomes are
easy to determine. However, even if the outcome is not always easy to test or predict,
automation can help complete a part of a task and leave the rest for your (or someone
else’s) closer inspection and analysis. You can think of automation here similarly to
the ways you automate other things in your life. You might have a favorite saved pizza
order or an auto-reply on your email. If a task has a fairly clear outcome and occurs
regularly, then it is a good task to automate.

But when should you not automate? Here are some criteria to indicate if a task isn’t a
good candidate for automation:

• The task occurs so rarely and is so complex, it’s better to do it yourself (e.g., filing
your taxes).

• A successful outcome for the task is difficult to determine (e.g., group discussion,
social research, or investigation).

• The task requires human interaction to determine the proper way to complete it
(e.g., navigating traffic, translating poetry).

• It is imperative the task succeeds.

Some of these examples—particularly things that require human input—are ripe for
some level of automation. Some we can partially automate by allowing machines to
find recommendations, which we can then determine are right or wrong (machine
learning with human feedback). Others, like when a task is rare and complex or is
business critical, might end up becoming automated, or partially automated, as they
become familiar. But you can see the overall logic to guide when automation fits best
and when it’s not a good idea.

374 | Chapter 14: Automation and Scaling

www.it-ebooks.info

http://www.it-ebooks.info/

If you’re not sure automation is right for you, you can always try automating some‐
thing small you do on a regular interval and see how it works. Chances are you’ll find
more applicable solutions over time, and the experience of automating one thing will
make it easier to automate more things in the future.

Steps to Automate
Because automation begins with a clear and simple focus, your steps to automate
should also be clear and simple. It is particularly helpful to begin automation by doc‐
umenting the following (in a list, on a whiteboard, in drawings, in a storyboard):

• When must this task begin?
• Does this task have a time limit or maximum length? If so, when must it end?
• What are the necessary inputs for this task?
• What constitutes success, or partial success, for this task?
• If this task fails, what should happen?
• What does the task produce or provide? To whom? In what way?
• What, if anything, should happen after this task concludes?

If you can answer five or more of these questions, you are in a good place. If you
can’t, it might be worth doing some more research and clarification before you begin.
If you are asked to automate something you have never done before, or haven’t done
often, try documenting it as you perform the task and then determine if you can
answer the questions listed here.

If your project is too large or vague, try breaking it up into smaller
tasks and automate a few of those tasks. Perhaps your task involves
a report which downloads two datasets, runs cleanup and analysis,
and then sends the results to different groups depending on the
outcome. You can break this task into subtasks, automating each
step. If any of these subtasks fail, stop the chain and alert the per‐
son(s) responsible for maintaining the script so it can be investiga‐
ted and restarted after the bug or issue is resolved.

So, our basic steps for automation are as follows (note that these will vary depending
on the types of tasks you are completing):

1. Define your problem set and break it into smaller chunks of work.
2. Describe exactly what each subtask needs as input, what it needs to do, and what

it needs to be marked complete.
3. Identify where you can get those inputs and when the tasks need to run.

Steps to Automate | 375

www.it-ebooks.info

http://www.it-ebooks.info/

4. Begin coding your task and testing with real or example data.
5. Clean up your task and your script, and add documentation.
6. Add logging, with a focus on debugging errors and recording successful

completion.
7. Submit your code to a repository and test it manually. Make changes as needed.
8. Get your script ready for automation, by replacing manual tasks with automated

ones.
9. Watch your logs and alerts as the task begins automation. Correct any errors or

bugs. Update your testing and documentation.
10. Develop a long-term plan for how often the logs are checked for errors.

The first step toward automation is always to better define your tasks and subtasks
and make them small enough chunks, so they can easily be completed and their suc‐
cess or failure determined.

The next few steps align well with our process throughout this book. You should
identify how you can begin to solve the problem with Python. Search for libraries or
tools to help fix the problem or complete the request, and begin coding. Once your
script is working, you’ll want to test it with a few different possible datasets or inputs.
After successful testing, you’ll want to simplify and document it. You will likely set it
up in a repository (on Bitbucket or GitHub) so you can document changes and addi‐
tions over time.

Once you have a completed script, first run it by hand (rather than
the automated way). When the new data arrives or the time comes
to run it, do so manually and keep watch over its output. There
might be unforeseen errors or extra logging and debugging you’ll
need to add.

Depending on what type of automation fits your needs, you might set up a simple
cron task where the script is executed at certain intervals. (You’ll learn all about cron
later in this chapter.) You might need to slightly modify the script so it has the ability
to run autonomously by using argument variables, databases, or particular files on
the system. You might add it to a task queue to manage when it runs. Whichever fits,
your job is not yet over.

When your script is first automated, it’s essential you take time to
review it every time it runs. Look through your logs and monitor
what is happening. You will likely find small bugs, which you can
then fix. Again, refresh any necessary logging and documentation.

376 | Chapter 14: Automation and Scaling

www.it-ebooks.info

http://www.it-ebooks.info/

After about five successes or properly logged failures, you can likely scale back your
manual review. However, it’s still a great idea to grep your logs monthly or quarterly
and see what’s happening. If you are using a log aggregator, you can actually automate
this step and have the task send you error and warning reports. How meta is that?

Automation is no small process, but an early investment in time and attention will
pay dividends. A well-running set of automation tasks takes time to complete, but the
result is often far better than haphazard scripts requiring constant attention, care, and
monitoring. Pay close attention now and take time to automate your script the right
way. Only then can you really move on to whatever is next at hand, rather than con‐
stantly having one part of your work tied to monitoring and administering support
for a few unruly tasks.

What Could Go Wrong?
There are quite a few things that can go wrong with your automation. Some of them
are easy to correct and account for, while others are more nebulous and might never
have a true fix. One of the important lessons in automation is figuring out what types
of errors and issues are worth taking the time and energy to fix and what ones are
better to just plan for and work through another way.

Let’s take, for example, the types of errors we talked about in Chapter 12: our network
errors for web scraping. If you are running into significant network errors, you have
only a few good options. You can change who hosts your tasks and see if the perfor‐
mance improves (which may be costly and time consuming, depending on your
setup). You can call your network provider and ask for support. You can run the tasks
at a different time and see if there is a different outcome. You can expect the problems
to happen and build your script around these expectations (i.e., run more than you
need and expect some percentage to fail).

There are many possible errors you will encounter when running your tasks by
automation:

• Database connection errors leading to lost or bad data
• Script bugs and errors where the script does not properly complete
• Timeout errors or too many request errors from websites or APIs
• Edge cases, where the data or parts of the reporting don’t conform and break the

script
• Server load issues or other hardware problems
• Poor timing, race conditions (if scripts depend on previous completion of other

tasks, race conditions can invalidate the data)

What Could Go Wrong? | 377

www.it-ebooks.info

http://bit.ly/practical_grep_examples
https://en.wikipedia.org/wiki/Race_condition
http://www.it-ebooks.info/

There are naturally far more potential issues than you can antici‐
pate. The larger the team you work with, the greater the chance
that poor documentation, poor understanding, and poor team
communication can hurt automation. You will not be able to pre‐
vent every error, but you can try through the best communication
and documentation you can provide. Still, you will also need to
accept your automation will sometimes fail.

To prepare for eventual failure, you will want to be alerted when issues arise. You
should determine what percentage of error is acceptable. Not every service performs
well 100% of the time (hence the existence of status pages); however, we can strive for
perfection and determine how many hours and how much effort our automation is
worth.

Depending on your automation and its weaknesses, there are some ways to combat
those issues. Here are some ways to build a more resilient automation system:

• Retry failed tasks at a specific interval.
• Ensure your code has numerous try...except blocks allowing it to work

through failures.
• Build special exception blocks around code handling connections to other

machines, databases, or APIs.
• Regularly maintain and monitor machines you use for your automation.
• Test your tasks and automation on a regular basis using test data and ensure they

run properly.
• Make yourself aware of dependencies, race conditions, and API rules in your

script’s domain and write code according to this knowledge.
• Utilize libraries like requests and multiprocessing to make difficult problems

easier and attempt to take some of the mystery out of problems that plague many
scripts.

We’ll be reviewing some of these techniques and ideas as we walk through how to
best go about monitoring and automating your scripts. For now, let’s move on to tools
we can use for automation to make our lives as data wranglers easier and simpler and
determine a few tips on where and how you should implement these tools.

Where to Automate
Depending on the needs of your script, deciding where it runs will be an important
first step. No matter where it first runs, you can move it elsewhere, but this will likely
require some rewriting. At the beginning, you will probably need it to run locally. To
run a script or task locally is to run it on your own computer.

378 | Chapter 14: Automation and Scaling

www.it-ebooks.info

http://www.it-ebooks.info/

To run something remotely means to run it on another machine—likely a server
somewhere. Once your script succeeds and is well tested, you will want to move it to
run remotely. If you manage or have servers, or work for an organization with
servers, it can be relatively easy to port your scripts to those servers. This allows you
to work on your own machine (laptop or desktop) and not worry about when you
turn it off and on. Running your scripts remotely also means you are not dependent
on your ISP.

If you don’t have access to a server, but you have an old desktop or laptop you don’t
use anymore, you can essentially turn it into your server. If it’s running an old operat‐
ing system, you can upgrade it so you can properly run Python on it, or you can wipe
it and install Linux.

Using a home computer as your remote device means it should
always be turned on and plugged into your home Internet. If you’d
like to also install an OS you haven’t used before, like Linux, this is
an easy way to learn a new operating system and can help transi‐
tion you to managing your own servers. If you’re just getting
started with Linux, we recommend you choose one of the popular
distributions, such as Ubuntu or LinuxMint.

If you’d like to manage your own server but you’re just getting started, don’t panic!
Even if you’ve never managed or helped manage a server, increased competition
among cloud service providers has made it a lot easier. Cloud providers allow you to
spin up new machines and run your own server without needing to know a lot of
technical knowledge. One such provider, DigitalOcean, has several nice writeups on
how to get started, including introductions to creating your first server and getting
your server set up.

Whether you host your scripts locally or remotely, there are a variety of tools to keep
your computer or your server well monitored and updated. You’ll want to ensure
your scripts and tasks are fairly easy to manage and update, and that they run to com‐
pletion on a regular basis. Finally, you’ll want to be able to configure them and docu‐
ment them easily. We’ll cover all of those topics in the following sections, starting off
with Python tools you can use to help make your scripts more automation-friendly.

Special Tools for Automation
Python gives us many special tools for automation. We’ll take a look at some of the
ways we can manage our automation using Python, as well as using other machines
and servers to do our bidding. We’ll also discuss how we can use some built-in
Python tools to manage inputs for our scripts and automate things that seem to
require human input.

Special Tools for Automation | 379

www.it-ebooks.info

http://bit.ly/ubuntu_guide
http://linuxmint.com/
http://bit.ly/droplet_virtual_server
https://www.digitalocean.com/help/getting-started/setting-up-your-server/
https://www.digitalocean.com/help/getting-started/setting-up-your-server/
http://www.it-ebooks.info/

Using Local Files, argv, and Config Files
Depending on how your script works, you may need arguments or input that cannot
always or shouldn’t always be in a database or an API. When you have a simple input
or output, you can use local files and arguments to pass the data.

Local files
When using local files for input and output, you’ll want to ensure the script can run
on the same machine every day, or can be easily moved with the input and output
files. As your script grows, it’s possible you will move and change it along with the
files you use.

We’ve used local files before, but let’s review how to do so from a more functional
code standpoint. This code gives you the ability to open and write files using standard
data types, and is very reusable and expandable depending on your script’s needs:

from csv import reader, writer

def read_local_file(file_name):
 if '.csv' in file_name:
 rdr = reader(open(file_name, 'rb'))
 return rdr
 return open(file_name, 'rb')

def write_local_file(file_name, data):
 with open(file_name, 'wb') as open_file:
 if type(data) is list:
 wr = writer(open_file)
 for line in data:
 wr.writerow(line)
 else:
 open_file.write(data)

This line tests whether the file might be a good candidate to open with the csv
module. If it ends in .csv, then it’s likely we might want to open it using our CSV
reader.

If we haven’t returned with our CSV reader, this code returns the open file. If we
wanted to build a series of different ways to open and parse files based on the file
extension, we could do that as well (e.g., using the json module for JSON files, or
pdfminer for PDFs).

This code uses with...as to return the output of the open function, assigning it
to the open_file variable. When the indented block ends, Python will close the
file automatically.

380 | Chapter 14: Automation and Scaling

www.it-ebooks.info

http://www.it-ebooks.info/

If we are dealing with a list, this line uses the CSV writer to write each list item as
a row of data. If we have dictionaries, we might want to use the DictWriter class.

We want a good backup plan in case it’s not a list. For this reason, write the raw
data to file. Instead of this option, we could write different code depending on
the data type.

Let’s look at an example where we need the most recent file in a directory, which is
often useful if you need to parse log files going back in time or look at the results of a
recent web spider run:

import os

def get_latest(folder):
 files = [os.path.join(folder, f) for f in os.listdir(folder)]
 files.sort(key=lambda x: os.path.getmtime(x), reverse=True)
 return files[0]

Uses Python’s built-in os module to list each file (listdir method), then uses the
path module’s join method to make a long string representing a full file path.
This is an easy way to get a list of all of the files in a folder just by passing a string
(the folder’s path).

Sorts files by last-modified date. Because files is a list, we can call the sort
method and give it a key on which to sort. This code passes the full file paths to
getmtime, which is the os module’s “get modified time” method. The reverse
argument makes sure the more recent files are on the top of the list.

Returns only the most recent file.

This code returns the most recent folder, but if we wanted to return the whole list of
files starting with the most recent we could simply modify the code to not return the
first index, but instead the whole list or a slice.

There are many powerful tools to look up, modify, and alter files on
your local (or your server’s local) machine using the os library. A
simple search on Stack Overflow returns educated answers as to
how to find the only file modified in the last seven days or the
only .csv file modified in the last month, and so on. Using local
files, particularly when the data you need is already there (or easily
put there with a wget), is a great way to simplify your automation.

Config files
Setting up local config files for your sensitive information is a must. As asserted in the
Twelve-Factor App, storing your configuration (such as passwords, logins, email

Special Tools for Automation | 381

www.it-ebooks.info

http://12factor.net/config
http://www.it-ebooks.info/

addresses, and other sensitive information) outside of your code base is part of being
a good developer. If you connect to a database, send an email, use an API, or store
payment information, that sensitive data should be stored in a configuration file.

Usually, we store config files in a separate folder within the repository (e.g., config/).
All the code in the repository has access to these files, but by using .gitignore files, we
can keep the configuration out of version control. If you have other developers or
servers who need those files, you should copy them over manually.

We recommend having a section of the repository’s README.md
cover where and how to get hold of special configuration files so
new users and collaborators know who to ask for the proper files.

Using a folder rather than one file allows you to have different configurations
depending on what machine or environment the script runs in. You might want to
have one configuration file for the test environment with test API keys, and a produc‐
tion file. You might have more than one database depending on what machine the
script uses. You can store these specific pieces of information using a .cfg file, like the
following example:

Example configuration file
[address]
name = foo
email = myemail@bar.com
postalcode = 10177
street = Schlangestr. 4
city = Berlin
telephone = 015745738292950383

[auth_login]
user = test@mysite.com
pass = goodpassword

[db]
name = my_awesome_db
user = script_user
password = 7CH+89053FJKwjker)
host = my.host.io

[email]
user = script.email@gmail.com
password = 788Fksjelwi&

Each section is denoted by square brackets with an easy-to-read string inside of
them.

382 | Chapter 14: Automation and Scaling

www.it-ebooks.info

http://www.it-ebooks.info/

Each line contains a key = value pair. The ConfigParser interprets these as
strings. Values can contain any characters, including special characters, but keys
should follow PEP-8 easy-to-read syntax and structure.

Having sections, keys, and values for our configuration lets us use the names of the
sections and keys to access configuration values. This adds clarity to our Python
scripts, without being insecure. Once you have a config file like the previous example
set up, it’s quite easy to parse with Python and use in your script and automation.
Here’s an example:

import ConfigParser
from some_api import get_client

def get_config(env):
 config = ConfigParser.ConfigParser()
 if env == 'PROD':
 return config.read(['config/production.cfg'])
 elif env == 'TEST':
 return config.read(['config/test.cfg'])
 return config.read(['config/development.cfg'])

def api_login():
 config = get_config('PROD')
 my_client = get_client(config.get('api_login', 'user'),
 config.get('api_login', 'auth_key'))
 return my_client

Here’s an example of an API client hook we could import.

This code instantiates a config object by calling the ConfigParser class. This is
now an empty configuration object.

This line calls the configuration parser object’s read method and passes a list of
configuration files. Here, we store them in a directory in the root of the project in
a folder called config.

If the environment variable passed does not match production or testing, we will
always return the development configuration. It’s a good idea to have catches like
this in your configuration code, in case of a failure to define environment vari‐
ables.

We’ll assume our example needs the production API, so this line asks for the
PROD configuration. You can also save those types of decisions in the bash envi‐
ronment and read them using the built-in os.environ method.

Special Tools for Automation | 383

www.it-ebooks.info

http://bit.ly/process_parameters
http://www.it-ebooks.info/

This line calls the section name and key name to access the values stored in the
configuration. This will return the values as strings, so if you need integers or
other types, you should convert them.

The built-in ConfigParser library gives us easy access to our sections, keys, and val‐
ues stored in our config file. If you’d like to store different pieces of information in
different files and parse a list of them for each particular script, your code might look
like this:

config = ConfigParser.ConfigParser()
config.read(['config/email.cfg', 'config/database.cfg', 'config/staging.cfg'])

It’s up to you to organize your code and configuration depending on your needs. The
syntax to access the configuration values simply uses the section name in your config
(i.e., [section_name]) and the name of the key. So, a config file like this one:

[email]
user = test@mydomain.org
pass = my_super_password

can be accessed like this:

email_addy = config.get('email', 'user')
email_pass = config.get('email', 'pass')

Config files are a simple tool to keeping all of your sensitive infor‐
mation in one place. If you’d rather use .yml or other extension
files, Python has readers for those file types as well. Make sure you
use something to keep your authentication and sensitive informa‐
tion stored separately from your code.

Command-line arguments
Python gives us the ability to pass command-line arguments to use for automation.
These arguments pass information regarding how the script should function. For
example, if we need the script to know we want it to run with the development con‐
figuration, we could run it like so:

python my_script.py DEV

We are using the same syntax to run a file from the command line, calling python,
then the script name, and then adding DEV to the end of the line. How can we parse
the extra argument using Python? Let’s write code that does just that:

from import_config import get_config
import sys

def main(env):
 config = get_config(env)

384 | Chapter 14: Automation and Scaling

www.it-ebooks.info

http://www.it-ebooks.info/

 print config

if __name__ == '__main__':
 if len(sys.argv) > 1:
 env = sys.argv(1)
 else:
 env = 'TEST'
 main(env)

The built-in sys module helps with system tasks, including parsing command-
line arguments. If the command-line argument list returned has a length greater
than 1, there are extra arguments. The first argument always holds the name of
the script (so if it has a length of 1, that’s the only argument).

To get the value of an argument, pass the index of that argument to the sys mod‐
ule’s argv method. This line sets env equal to that value. Remember, the 0-index
of argv will always be the Python script name, so you start parsing with the argu‐
ment at the 1-index.

This line uses the parsed arguments to modify your code according to the
command-line arguments.

If we wanted to parse more than one extra variable, we could test
the length to ensure we have enough, and then continue parsing.
You can string together as many arguments as you’d like, but we
recommend keeping it to under four. If you need more than four
arguments, consider writing some of the logic into your script (e.g.,
on Tuesdays we only run testing, so if it’s a Tuesday, use the test sec‐
tion of code, etc.).

Argument variables are great if you need to reuse the same code to perform different
tasks or run in different environments. Maybe you have a script to run either collec‐
tion or analysis, and you’d like to switch which environments you use. You might run
it like so:

python my_script.py DEV ANALYSIS
python my_script.py PROD COLLECTION

Or you might have a script that needs to interact with a newly updated file folder and
grab the latest logs—for example, to grab logs from more than one place:

python my_script.py DEV /var/log/apache2/
python my_script.py PROD /var/log/nginx/

With command-line arguments, simple changes in argument variables can create a
portable and robust automation. Not every script will need to use these types of extra

Special Tools for Automation | 385

www.it-ebooks.info

http://www.it-ebooks.info/

variables, but it’s a nice-to-have solution built into the standard Python library and
provides some flexibility should you need it.

Aside from these fairly simple and straightforward ways to parse your data and to
give your script extra pieces of information, you can use more sophisticated and dis‐
tributed approaches like cloud data and databasing. We’ll look at these next.

Using the Cloud for Data Processing
The cloud is a term used to refer to a shared pool of resources, such as servers. There
are many companies that offer cloud services—Amazon Web Services, more com‐
monly referred to as AWS, is one of the best known.

The term cloud is often overused. If you are running your code on
a cloud-based server, it is better to say “I am running it on a server”
rather than “I am running it in the cloud.”

When is a good time to use the cloud? The cloud is a good way to process data if the
data is too large to process on your own computer or the procedure takes too long.
Most tasks you want to automate you’ll want to place in the cloud so you don’t have
to worry about whether the script is running or not when you turn your computer on
or off.

If you choose to use AWS, the first time you log in you will see many different service
offerings. There are only a few services you will need as a data wrangler (see
Table 14-1).

Table 14-1. AWS cloud services

Service Purpose in data wrangling

Simple Storage Service (S3) A simple file storage service, used for dumping data files (JSON, XML, etc.).

Elastic Computing (EC2) A on-demand server. This is where you run your scripts.

Elastic MapReduce (EMR) Provides distributed data processing through a managed Hadoop framework.

Those are the basic AWS services with which to familiarize yourself. There are also
several competitors, including IBM’s Bluemix and Watson Developer Cloud (giving
you access to several large data platforms, including Watson’s logic and natural lan‐
guage processing abilities). You can also use DigitalOcean or Rackspace, which pro‐
vide cheaper cloud resources.

386 | Chapter 14: Automation and Scaling

www.it-ebooks.info

http://www.it-ebooks.info/

No matter what you use, you’ll need to deploy your code to your cloud server. To do
so, we recommend using Git.

Using Git to deploy Python
If you’d like to have your automation run somewhere other than your local machine,
you’ll need to deploy your Python script. We will review a few simple ways to do so,
and then some slightly more complex ways.

Version control allows teams to work in parallel on the same repos‐
itory of code without causing problems for one another. Git allows
you to create different branches, thus allowing you or others on the
team to work on a particular set of ideas or new integrations inde‐
pendently and then merge them back into the main or master
branch of the code base easily and without losing any of the core
functionality. It also ensures everyone has the most up-to-date code
(including servers and remote machines).

The easiest and most intuitive way to deploy Python is to put your repository under
version control using Git and use Git deploy hooks to “ship” code to your remote
hosts. First, you’ll need to install Git.

If you’re new to Git, we recommend taking the Code School tutorial on GitHub or
walking through the Git tutorials on Atlassian. It’s fairly easy to get started, and you’ll
get the hang of the most used commands quickly. If you’re working on the repository
by yourself, you won’t have to worry too much about pulling remote changes, but it’s
always good to set a clear routine.

Once your Git installation is complete, run these commands in your project’s code
folder:

git init .
git add my_script.py
git commit -a

Initializes the current working directory as the root of your Git repository.

Adds my_script.py to the repository. Use a filename or folder from your reposi‐
tory—just not your config files!

Commits those changes along with any other running changes (-a) to your
repository.

When prompted, you will need to write a commit message giving a brief explanation
of the changes you’ve made, which should be explicit and clear. You might later need
to find which commits implemented certain changes in your code. If you always write

Special Tools for Automation | 387

www.it-ebooks.info

https://git-scm.com
http://bit.ly/installing_git
https://try.github.io/levels/1/challenges/1
https://www.atlassian.com/git/tutorials/
http://www.it-ebooks.info/

clear messages, this will help you search for and find those commits. It will also help
others on your team or coworkers understand your code and commits.

Get used to fetching remote changes with git fetch or using the
git pull --rebase command to update your local repository with
new commits. Then, work on your code, commit your work, and
push your commits to your active branch. When it’s time to merge
your branch with the master, you can send a pull request, have oth‐
ers review the merge, and then merge it directly into master
branch. Don’t forget to delete stale or old branches when they are
no longer useful.

It’s also essential you set up a .gitignore file, where you list all of the file patterns you
want Git to ignore when you push/pull changes, as discussed in the sidebar “Git
and .gitignore” on page 211. You can have one for each folder or just one in the base
folder of the repository. Most Python .gitignore files look something like this:

*.pyc
*.csv
*.log
config/*

This file will prevent compiled Python files, CSV files, log files, and config files from
being stored in the repository. You’ll probably want to add more patterns, depending
on what other types of files you have in your repository folders.

You can host your repository on a number of sites. GitHub offers free public reposi‐
tories but no private repositories. If you need your code to be private, Bitbucket has
free private repositories. If you’ve already started using Git locally, it’s easy to push
your existing Git repository to GitHub or Bitbucket.

Once you have your repository set up, setting up your remote endpoints (server or
servers) with Git is simple. Here is one example if you are deploying to a folder you
have ssh access to:

git remote add deploy ssh://user@342.165.22.33/home/user/my_script

Before you can push your code to the server, you’ll need to set up the folder on the
receiving end with a few commands. You will want to run these commands in the
server folder in which you plan to deploy:

git init .
git config core.worktree `pwd`
git config receive.denycurrentbranch ignore

Here you have initialized an empty repository to send code to from your local
machine and defined some simple configurations so Git knows it will be a remote
endpoint. You’ll also want to set up a post-receive hook. Do so by creating an exe‐

388 | Chapter 14: Automation and Scaling

www.it-ebooks.info

https://help.github.com/articles/using-pull-requests/
https://github.com/
https://bitbucket.org/
http://bit.ly/set_up_git
http://bit.ly/create_bitbucket_repo
http://git-scm.com/docs/git-remote
http://www.it-ebooks.info/

cutable (via permissions) file called post-receive in the .git/hooks folder in the folder
you just initialized. This file will execute when the deploy endpoint receives any Git
push. It should contain any tasks you need to run every time you push, such as sync‐
ing databases, clearing the cache, or restarting any processes. At a minimum, it will
need to update the endpoint.

A simple .git/hooks/post-receive file looks like this:

#!/bin/sh
git checkout -f
git reset --hard

This will reset any local changes (on the remote machine) and update the code.

You should make all of your changes on your local machine, test
them, and then push them to the deploy endpoint. It’s a good habit
to start from the beginning. That way, all of your code is under ver‐
sion control and you can ensure there are no intermittent bugs or
errors introduced by modifying code directly on the server.

Once your endpoint is set up, you can simply run the following command from your
local repository to update the code on the server with all the latest commits:

git push deploy master

Doing so is a great way to manage your repository and server or remote machine; it’s
really easy to use and set up and makes migration, if necessary, straightforward.

If you’re new to deployment and version control, we recommend starting with Git
and getting comfortable with it before moving on to more complex deployment
options, like using Fabric. Later in this chapter, we’ll cover some larger-scale automa‐
tion for deploying and managing code across multiple servers.

Using Parallel Processing
Parallel processing is a wonderful tool for script automation, giving you the ability to
run many concurrent processes from one script. If your script needs to have more
than one process, Python’s built-in multiprocessing library will become your go-to
for automation. If you have a series of tasks you need to run in parallel or tasks you
could speed up by running in parallel, multiprocessing is the right tool.

So how can one utilize multiprocessing? Here’s a quick example:

from multiprocessing import Process, Manager
import requests

ALL_URLS = ['google.com', 'bing.com', 'yahoo.com',
 'twitter.com', 'facebook.com', 'github.com',
 'python.org', 'myreallyneatsiteyoushouldread.com']

Special Tools for Automation | 389

www.it-ebooks.info

http://www.fabfile.org/
http://www.it-ebooks.info/

def is_up_or_not(url, is_up, lock):
 resp = requests.get('http://www.isup.me/%s' % url)
 if 'is up.' in resp.content:
 is_up.append(url)
 else:
 with lock:
 print 'HOLY CRAP %s is down!!!!!' % url

def get_procs(is_up, lock):
 procs = []
 for url in ALL_URLS:
 procs.append(Process(target=is_up_or_not,
 args=(url, is_up, lock)))
 return procs

def main():
 manager = Manager()
 is_up = manager.list()
 lock = manager.Lock()
 for p in get_procs(is_up, lock):
 p.start()
 p.join()
 print is_up

if __name__ == '__main__':
 main()

Imports the Process and Manager classes from the built-in multiprocessing
library to help manage our processes.

Defines our main worker function, is_up_or_not, which requires three argu‐
ments: a URL, a shared list, and a shared lock. The list and lock are shared among
all of our processes, allowing each of the processes the ability to modify or use
them.

Uses requests to ask isup.me whether a given URL is currently online and
available.

Tests to see if we can parse the text “is up.” on the page. If that text exists, we
know the URL is up.

Calls the lock’s acquire method through a with block. This acquires the lock,
continues executing the indented code, and then releases the lock at the end of
the code block. Locks are blocking and should be used only if you require block‐

390 | Chapter 14: Automation and Scaling

www.it-ebooks.info

http://bit.ly/python_threads_synch
http://www.it-ebooks.info/

ing in your code (for example, if you need to ensure only one process runs a spe‐
cial set of logic, like checking if a shared value has changed or has reached a
termination point).

Passes the shared lock and list to use when generating the processes.

Creates a Process object by passing it keyword arguments: the target (i.e., what
function should I run?) and the args (i.e., with what variables?). This line
appends all of our processes to a list so we have them in one place.

Initializes our Manager object, which helps manage shared items and logging
across processes.

Creates a shared list object to keep track of what sites are up. Each of the pro‐
cesses will have the ability to alter this list.

Creates a shared lock object to stop and announce if we encounter a site that is
not up. If these were all sites we managed, we might have an important bit of
business logic here for emergencies and therefore a reason to “stop everything.”

Starts each of the processes returned by get_procs individually. Once they are
started, join allows the Manager object and therefore all the child processes to
communicate until the last one is finished.

When using multiprocessing, you usually have a manager process and child pro‐
cesses. You can pass arguments to your child processes, and you can use shared mem‐
ory and shared variables. This gives you the power to determine how to utilize and
architect your multiprocessing. Depending on the needs of your script, you might
want to have the manager run a bunch of the logic of the script and use child pro‐
cesses to run one particular section of high-latency or long-running code.

A shared lock object provides the ability to have multiple processes
running simultaneously while protecting certain areas of the inter‐
nal logic. A nice way to use them is simply by placing your lock
logic in a with statement.

If you’re unsure whether your script is a good candidate for multiprocessing, you can
always test out a section of the script or a subtask first, and determine whether you
were able to achieve your parallel programming goals or whether it unnecessarily
complicates the logic. There are some tasks better completed using large-scale auto‐
mation and queueing, which we’ll discuss later in this chapter.

Special Tools for Automation | 391

www.it-ebooks.info

http://bit.ly/lock_objects
http://bit.ly/with_statement
http://bit.ly/with_statement
http://www.it-ebooks.info/

Using Distributed Processing
In addition to parallel processing or multiprocessing, there is also distributed process‐
ing, which involves distributing your process over many machines (unlike parallel
processing, which occurs on one machine). Parallel processing is faster, when your
computer can handle it, but sometimes you need more power.

Distributed processing touches on more than one type of comput‐
ing problem. There are tools and libraries working to manage pro‐
cesses distributed across many computers, and others working on
managing storage across many computers. Terms related to these
problems include distributed computing, MapReduce, Hadoop,
HDFS, Spark, Pig, and Hive.

In early 2008, the William J. Clinton Presidential Library and the National Archives
released Hillary Clinton’s schedule as First Lady from 1993 through 2001. The archive
consisted of more than 17,000 pages of PDF images and needed to be optical charac‐
ter recognized, or OCR-ed, in order to be turned into a useful dataset. Because this
was during the Democratic presidential primaries, news organizations wanted to
publish the data. To accomplish this, The Washington Post used distributed processing
services to turn the 17,000 images into text. By distributing the work to more than
100 computers, they were able to complete the process in less than 24 hours.

Distributed processing with a framework like Hadoop involves two major steps. The
first step is to map the data or input. This process acts like a filter of sorts. A mapper
is used to say “separate all the words in a text file,” or “separate all of the users who
have tweeted a certain hashtag in the past hour.” The next step is to reduce the map‐
ped data into something usable. This is similar to the aggregate functions we used in
Chapter 9. If we were looking at all of the Twitter handles from the Spritzer feed, we
might want a count of tweets per handle or an aggregate of handles depending on
geography or topic (i.e., all tweets originating from this time zone used these words
the most). The reducer portion helps us take this large data and “reduce” it into a
readable and actionable report.

As you can probably see, not all datasets will need a map-reduce, and the theories
behind MapReduce are already available in many of the Python data libraries. How‐
ever, if you have a truly large dataset, using a MapReduce tool like Hadoop can save
you hours of computing time. For a really great walkthrough, we recommend
Michael Noll’s tutorial on writing a Hadoop MapReduce program in Python, which
uses some word counting to explore Python and Hadoop. There is also great docu‐
mentation for mrjob, which is written and maintained by developers at Yelp. If you’d
like to read more on the topic, check out Kevin Schmidt and Christopher Phillips’s
Programming Elastic MapReduce (O’Reilly).

392 | Chapter 14: Automation and Scaling

www.it-ebooks.info

http://bit.ly/python_mapreduce
https://pythonhosted.org/mrjob/
http://www.yelp.com
http://shop.oreilly.com/product/0636920029304.do
http://www.it-ebooks.info/

If your dataset is large but is stored disparately or is real-time (or near real-time), you
may want to take a look at Spark, another Apache project that has gained popularity
for its speed, machine learning uses, and ability to handle streams. If your task han‐
dles streaming real-time data (from a service, an API, or even logs), then Spark is
likely a more feasible choice than Hadoop and can handle the same MapReduce com‐
puting structure. Spark is also great if you need to use machine learning or any analy‐
sis requiring you to generate data and “feed” it into your data clusters. PySpark, the
Python API for Spark, is maintained by the same developers, giving you the ability to
write Python for your Spark processing.

To get started using Spark, we recommend Benjamin Bengfort’s detailed blog post
covering how to get it installed, integrated with Jupyter notebooks, and setting up
your first project. You can also check out John Ramey’s post on PySpark integration
with Jupyter notebooks, and further explore the data collection and analysis possibili‐
ties in your notebook.

Simple Automation
Simple automation in Python is easy. If your code doesn’t need to run on many
machines, if you have one server, or if your tasks aren’t event-driven (or can be run at
the same time daily), simple automation will work. One major tenet of development
is to choose the most clear and simple path. Automation is no different! If you can
easily use a cron job to automate your tasks, by no means should you waste time
overengineering it or making it any more complicated.

As we review simple automation, we’ll cover the built-in cron (a Unix-based system
task manager) and various web interfaces to give your team easy access to the scripts
you’ve written. These represent simple automation solutions which don’t require your
direct involvement.

CronJobs
Cron is a Unix-based job scheduler for running scripts using your server’s logging
and management utilities. Cron expects you to determine how often and at what
times your task should run.

If you can’t easily define a timeline for your scripts, cron might not
be a good fit. Alternatively, you could run a regular cron task to test
whether the necessary conditions for your task to run exist and
then use a database or local file to signal it’s time to run. With one
more cron task, you would check that file or database and perform
the task.

Simple Automation | 393

www.it-ebooks.info

http://spark.apache.org/
http://bit.ly/spark_python_docs
http://bit.ly/gs_with_spark
http://bit.ly/ipy_notebook_pyspark
http://en.wikipedia.org/wiki/Cron
http://www.it-ebooks.info/

If you’ve never used a cron file before, they are fairly straightforward. Most can be
edited by simply typing:

crontab -e

Depending on your operating system, if you’ve never written a
cron file before, you may be prompted to choose an editor. Feel free
to stick with the default or change it if you have another preference.

You will see a bunch of documentation and comments in the file explaining how a
cron file works. Every line of your cron file that doesn’t begin with a # symbol is a line
to define a cron task. Each of these cron tasks is expected to have the following list of
arguments:

minute hour day_of_month month day_of_week usercommand

If a script should run every hour of the day, but only on weekdays, you’d want to write
something like this:

0 * * * 1-5 python run_this.py

This tells cron to run your script at the top of the hour, every hour, from Monday
through Friday. There are quite a lot of good tutorials that walk through exactly what
options are available to you, but here are a few tips:

• Always set up your MAIL_TO=your@email.com variable before any lines of code.
This way, if one of your scripts fails, cron will email you the exception so you’ll
know it didn’t work. You will need to set up your laptop, computer, or server to
send mail. Depending on your operating system and ISP, you may need to do
some configuration. There’s a good GitHub gist to get Mac users started, and a
handy post by HolaRails for Ubuntu users.

• If you have services running that should be restarted if the computer reboots, use
the @reboot feature.

• If you have several path environments or other commands that must run to exe‐
cute your script properly, you should write a cron.sh file in your repository. Put
all necessary commands in the file and run that file directly, rather than a long
list of commands connected with && signs.

• Don’t be afraid to search for answers. If you’re new to cron and are having an
issue, it’s quite possible someone has posted a solution that is a simple Google
search away.

To test out how to use cron, we’ll create a simple Python example. Start by creating a
new Python file called hello_time.py, and place this code in it:

394 | Chapter 14: Automation and Scaling

www.it-ebooks.info

https://help.ubuntu.com/community/CronHowto
http://bit.ly/sendmail_setup
http://bit.ly/configure_sendmail
http://www.it-ebooks.info/

from datetime import datetime

print 'Hello, it is now %s.' % datetime.now().strftime('%d-%m-%Y %H:%M:%S')

Next, make a simple cron.sh file in the same folder and write the following bash com‐
mands in it:

export ENV=PROD
cd /home/your_home/folder_name
python hello_time.py

We don’t need to set the environment variable, since we are not actively using it, and
you’ll need to update the cd line so that it properly changes into the folder the code is
in (this is the path to the current file). However, this is a good example of how to use
bash commands to set variables, source virtual environments, copy and move files or
change into new folders, and then call your Python file. You’ve been using bash since
the beginning of the book, so no need to fear even if you are still a beginner.

Finally, let’s set up our cron task by editing our file using crontab -e. Add these lines
below the documentation in your editor:

MAIL_TO=youremail@yourdomain.com
*/5 * * * * bash /home/your_home/folder_name/cron.sh > /var/log/my_cron.log 2>&1

You should replace the made-up email in this example with your real one and write
the proper path to the cron file you just created. Remember, your hello_time.py script
should be in the same folder. In this example, we have also set up a log file (/var/log/
my_cron.log) for cron to use. The 2>&1 statement at the end of the line tells cron to
put the output and any errors into that log file. Once you have exited your editor and
properly saved your cron file, you should see a message confirming your new cron
task is now installed. Wait a few minutes and then check the log file. You should see
the message from the script in that file. If not, you can check your cron error mes‐
sages by searching in your system log (usually /var/log/syslog) or in your cron log
(usually /var/log/cron). To remove this cron task, simply edit your crontab again and
delete the line or place a # at the beginning of the line to comment it out.

Cron can be a very simple way to automate your script and alert‐
ing. It’s a powerful tool designed by Bell Labs during the initial
development of Unix in the mid-1970s, and is still widely used. If
it’s easy to predict when your automation should run, or it is only a
few bash commands away from running, cron is a useful way to
automate your code.

If you needed to pass command-line arguments for your cron tasks, the lines in the
file might then look like this:

*/20 10-22 * * * python my_arg_code.py arg1 arg2 arg3
0,30 10-22 * * * python my_arg_code.py arg4 arg5 arg6

Simple Automation | 395

www.it-ebooks.info

http://www.it-ebooks.info/

Cron is fairly flexible but also very simple. If it fits your needs, great! If not, keep
reading to learn some other simple ways to automate your data wrangling.

Web Interfaces
If you need your script, scraper, or reporting task to run on demand, one easy solu‐
tion is to simply build a web interface where people can log in and push a button to
fire it up. Python has many different web frameworks to choose from, so it’s up to you
which one to use and how much time you’d like to spend working on the web
interface.

One easy way to get started is to use Flask-Admin, which is an administrative site
built on top of the Flask web framework. Flask is a microframework, meaning it
doesn’t require a lot of code to get started. After getting your site up and running by
following the instructions in the quickstart guide, you simply set up a view in your
Flask application to execute the task.

Make sure your task can alert the user or you when it’s finished in
another way (email, messaging, etc.), as it’s unlikely to complete in
time to give a proper web response. Also be sure to notify the user
when the task starts, so they don’t end up requesting the task to run
many times in a row.

Another popular and often used microframework in Python is Bottle. Bottle can be
used similarly to Flask, with a view to execute the task if the user clicks a button (or
does some other simple action).

A larger Python web framework often used by Python developers is Django. Origi‐
nally developed to allow newsrooms to easily publish content, it comes with a built-in
authentication and database system and uses a settings file to configure most of these
features.

No matter what framework you use or how you build your views, you’ll want to host
your framework somewhere so others can request tasks. You can host your own site
fairly easily using DigitalOcean or Amazon Web Services (see Appendix G). You can
also use service providers who support Python environments, like Heroku. If you’re
interested in that option, Kenneth Reitz has written a great introduction to deploying
your Python apps using Heroku.

Regardless of what framework or microframework you use, you’ll
want to think about authentication and security. You can set that up
server-side with whatever web server you are using, or explore
options the framework gives you (including plug-ins or other sup‐
port features).

396 | Chapter 14: Automation and Scaling

www.it-ebooks.info

https://flask-admin.readthedocs.org/en/v1.0.9/
http://flask.pocoo.org/
http://flask.pocoo.org/docs/0.10/quickstart/
http://bottlepy.org/docs/dev/index.html
https://www.djangoproject.com/
https://www.heroku.com/
http://bit.ly/python_heroku
http://www.it-ebooks.info/

Jupyter Notebooks
We covered how to set up your Jupyter notebooks in Chapter 10, and they are
another great way to share code, particularly with folks who may not need to know
Python, but who need to view the charts or other outputs of your script. If you teach
them how to use simple commands, like running all the cells in the notebook and
shutting it down after they’ve downloaded the new reports, you’ll find it can save you
hours of time.

Adding in Markdown cells to explain how to use your shared note‐
books is a great way to ensure everyone is clear on how to use the
code and can move forward easily without your help.

If your script is well organized with functions and doesn’t need to be modified, simply
put the repository in a place where the Jupyter notebooks can import and use the
code (it’s also a good idea to set your server or notebook’s PYTHONPATH so the modules
you are using are always available). This way, you can import those main functions
into a notebook and have the script run and generate the report when someone clicks
the notebook’s “Play All” button.

Large-Scale Automation
If your system is larger than one machine or server can handle or if your reporting is
tied into a distributed application or some other event-driven system, it’s likely you’ll
need something more robust than just web interfaces, notebooks, and cron. If you
need a true task management system and you’d like to use Python, you’re in luck. In
this section, we’ll cover a robust task management tool called Celery that handles
larger stacks of tasks, automates workers (you’ll learn about workers in the next sec‐
tion) and provides monitoring solutions.

We will also cover operations automation, which can be helpful if you manage a series
of servers or environments with different needs. Ansible is a great automation tool to
help with tasks as rote as migrating databases all the way up to large-scale integrated
deployments.

There are some alternatives to Celery, such as Spotify’s Luigi, which is useful if you
are using Hadoop and you have large-scale task management needs (particularly
long-running tasks, which can be a pain point). As far as good alternatives for opera‐
tions automation, it is a quite crowded space. If you only need to manage a few
servers, for Python-only deployment one good option is Fabric.

For larger-scale management of servers, a good alternative is SaltStack, or using
Vagrant with any number of deployment and management tools like Chef or Puppet.

Large-Scale Automation | 397

www.it-ebooks.info

http://bit.ly/add_dir_pythonpath
http://www.celeryproject.org
http://www.ansible.com
https://github.com/spotify/luigi
http://www.fabfile.org/
http://saltstack.com/
https://www.vagrantup.com/
https://www.chef.io/chef/
https://puppetlabs.com/
http://www.it-ebooks.info/

We’ve chosen to highlight some of the tools we’ve used in this section, but they are
not the only tools for larger-scale automation using Python. Given the field’s popular‐
ity and necessity, we recommend following discussions of larger-scale automation on
your favorite technology and discussion sites, such as Hacker News.

Celery: Queue-Based Automation
Celery is a Python library used to create a distributed queue system. With Celery,
your tasks are managed using a scheduler or via events and messaging. Celery is the
complete solution if you’re looking for something scalable, that can handle long-
running event-driven tasks. Celery integrates well with a few different queue back‐
ends. It uses settings files, user interfaces, and API calls to manage the tasks. And it’s
fairly easy to get started, so no need to fear if it’s your first task management system.

No matter how you set up your Celery project, it will likely contain the following task
manager system components:

Message broker (likely RabbitMQ)
This acts as a queue for tasks waiting to be processed.

Task manager/queue manager (Celery)
This service keeps track of the logic controlling how many workers to use, what
tasks take priority, when to retry, and so on.

Workers
Workers are Python processes controlled by Celery which execute your Python
code. They know what tasks you have set them up to do and they attempt to run
that Python code to completion.

Monitoring tool (e.g., Flower)
This allows you to take a look at the workers and your queue and is great for
answering questions like “What failed last night?”

Celery has a useful getting started guide, but we find the biggest problem is not learn‐
ing how to use Celery, but instead learning what types of tasks are good for queues
and what tasks aren’t. Table 14-2 reviews a few questions and philosophical ideas
around queue-based automation.

Table 14-2. To queue or not to queue?

Queue-based task management requirements. Requirements for automation without queues.

Tasks do not have a specific deadline. Tasks can and do have deadlines.

We don’t need to know how many tasks we have. We can easily quantify what tasks need to be done.

We only know the prioritization of tasks in a general sense. We know exactly which tasks take priority.

398 | Chapter 14: Automation and Scaling

www.it-ebooks.info

https://news.ycombinator.com/
http://www.celeryproject.org/
https://www.rabbitmq.com/
http://flower.readthedocs.org/en/latest/
http://bit.ly/first_steps_w_celery
http://www.it-ebooks.info/

Queue-based task management requirements. Requirements for automation without queues.

Tasks need not always happen in order, or are not usually order-
based.

Tasks must happen in order.

Tasks can sometimes take a long time, and other times a short time. We need to know how long tasks take.

Tasks are called (or queued) based on an event or another task’s
completion.

Tasks are based on the clock or something
predictable.

It’s OK if tasks fail; we can retry. We must be aware of every task failure.

We have a lot of tasks and a strong potential for task growth. We have only a few tasks a day.

These requirements are generalized, but they indicate some of the philosophical dif‐
ferences between when a task queue is a good idea and when something might be bet‐
ter run on a schedule with alerting, monitoring, and logging.

It’s fine to have different parts of your tasks in different systems,
and you’ll see that often at larger companies where they have differ‐
ent “buckets” of tasks. It’s also OK to test out both queue-based and
non-queue-based task management and determine what fits best
for you and your projects.

There are other task and queue management systems for Python, including Python
RQ and PyRes. Both of them are newer and therefore might not have the same
Google-fu in terms of problem solving, but if you’d like to play around with Celery
first and then branch out to other alternatives, you have options.

Ansible: Operations Automation
If you are at the scale where you need Celery to manage your tasks, it’s quite likely
you also need some help managing your other services and operations. If your
projects need to be maintained on a distributed system, you should start organizing
them so you can easily distribute via automation.

Ansible is an excellent system to automate the operations side of your projects. Ansi‐
ble gives you access to a series of tools you can use to quickly spin up, deploy, and
manage code. You can use Ansible to migrate projects and back up data from your
remote machines. You can also use it to update servers with security fixes or new
packages as needed.

Ansible has a quickstart video to get to know all of the basics, but we’d also like to
highlight a few of the most useful features described in the documentation:

Large-Scale Automation | 399

www.it-ebooks.info

http://python-rq.org/
http://python-rq.org/
https://github.com/binarydud/pyres
http://www.ansible.com/home
http://docs.ansible.com/quickstart.html
http://www.it-ebooks.info/

• MySQL database management
• Digital Ocean droplet and key management
• Guide for rolling upgrades and deployment

We also recommend checking out Justin Ellingwood’s introduction to Ansible play‐
books and the Servers for Hackers extended introduction to Ansible.

Ansible is probably too advanced and overcomplicated if you only
have one or two servers or you only deploy one or two projects, but
it is a great resource if your project grows and you need something
to help keep your setup organized. If you have an interest in opera‐
tions and system administration, it’s a great tool to learn and
master.

If you’d rather leave your operations to a nice image you’ve created and can just
restart every time, plenty of cloud providers let you do just that! There’s no pressing
need to become an operations automation expert for your data wrangling needs.

Monitoring Your Automation
It’s essential you spend time monitoring your automation. If you have no idea
whether a task completed or if your tasks succeeded or failed, you might as well not
be running them. For this reason, monitoring your scripts and the machines running
them is an important part of the process.

For example, if you have a hidden bug where data is not actually being loaded and
every day or week you are running reporting on old data, that would be awful news.
With automation, failure is not always obvious, as your script may continue running
with old data or other errors and inconsistencies. Monitoring is your view into
whether your script is succeeding or failing, even if all signs indicate it is still operat‐
ing normally.

Monitoring can have a small or large footprint, depending on the
scale and needs of your tasks. If you are going to have a large-scale
automation running across many servers, you’ll probably need to
use a larger distributed monitoring system or something that
boasts monitoring as a service. If, however, you are running your
tasks on a home server, you probably only need to use the built-in
Python logging tool.

You’ll likely want some alerting and notifications for your script as well. It’s easy in
Python to upload, download, email, or even SMS the result. In this section, we’ll

400 | Chapter 14: Automation and Scaling

www.it-ebooks.info

http://docs.ansible.com/mysql_db_module.html
http://bit.ly/ansible_digital_ocean
http://docs.ansible.com/guide_rolling_upgrade.html
http://bit.ly/digital_ocean_ansible
http://bit.ly/digital_ocean_ansible
https://serversforhackers.com/an-ansible-tutorial
http://www.it-ebooks.info/

cover various logging options and review ways to set up notifications. After thorough
testing and with a strong understanding of all the potential errors from daily moni‐
toring, you can fully automate the task and manage the errors via alerts.

Python Logging
The most basic monitoring your script will need is logging. Lucky for you, Python
has a very robust and feature-rich logging environment as part of the standard
library. The clients or libraries you interact with usually have loggers integrated with
the Python logging ecosystem.

Using the simple basic configuration given in Python’s built-in logging module, we
can instantiate our logger and get started. You can then use the many different config‐
uration options to meet your script’s specific logging needs. Python’s logging lets you
set particular logging levels, and log record attributes and adjust the formatting. The
logger object also has methods and attributes that can be useful depending on your
needs.

Here’s how we set up and use logging in our code:

import logging
from datetime import datetime

def start_logger():
 logging.basicConfig(filename='/var/log/my_script/daily_report_%s.log' %
 datetime.strftime(datetime.now(), '%m%d%Y_%H%M%S'),
 level=logging.DEBUG,
 format='%(asctime)s %(message)s',
 datefmt='%m-%d %H:%M:%S')

def main():
 start_logger()
 logging.debug("SCRIPT: I'm starting to do things!")

 try:
 20 / 0
 except Exception:
 logging.exception('SCRIPT: We had a problem!')
 logging.error('SCRIPT: Issue with division in the main() function')

 logging.debug('SCRIPT: About to wrap things up!')

if __name__ == '__main__':
 main()

Initializes our logging using the logging module’s basicConfig method, which
requires a log file name. This code logs to our /var/log folder in a folder,

Monitoring Your Automation | 401

www.it-ebooks.info

http://bit.ly/logging_levels
http://bit.ly/logrecord_attributes
http://bit.ly/logger_objects
http://www.it-ebooks.info/

my_script. The filename is daily_report_<DATEINFO>.log, where <DATEINFO>
is the time the script began, including the month, date, year, hour, minute, and
second. This tells us when the script ran and why, and is good logging practice.

Sets our logging level. Most often, you will want the level set to DEBUG so you can
leave debugging messages in the code and track them in the logs. If you’d like
even more information, you can use the INFO setting, which will also show more
logging from your helper libraries. Some people prefer less verbose logs and set it
to WARNING or ERROR instead.

Sets the format of Python logging using the log record attributes. Here we record
the message sent to logging and the time it was logged.

Sets a human-readable date format so our logs can easily be parsed or searched
using our preferred date format. Here we have month, day, hour, minute, and
second logged.

Calls the module’s debug method to start logging. This method expects a string.
We are prefacing our script log entries with the word SCRIPT:. Adding searcha‐
ble notes like this to your logs will help you later determine which processes and
libraries wrote to your log.

Uses the logging module’s exception method, which writes a string you send
along with a traceback from the Python exception, and can therefore only be
used in an exception block. This is tremendously useful for debugging errors and
seeing how many exceptions you have in your script.

Logs a longer error message using the error level. The logging module has the
ability to log a variety of levels, including debug, error, info, and warning. Be
consistent with how you log, and use info or debug for your normal messages
and error to log messages specific to errors and exceptions in your script. That
way, you always know where to look for problems and how to properly parse
your logs for review.

As we’ve done in the example here, we find it useful to begin log messages with a note
to yourself about what module or area of the code is writing the message. This can
help determine where the error occurred. It also makes your logs easy to search and
parse, as you can clearly see what errors or issues your script encounters. The best
way to approach logging is to determine where to put messages to yourself as you are
first writing your script, and keep the important messages in the script to determine
whether something has broken and at what point.

402 | Chapter 14: Automation and Scaling

www.it-ebooks.info

http://www.it-ebooks.info/

Every exception should be logged, even if the exception is expected.
This will help you keep track of how often those exceptions occur
and whether your code should treat them as normal. The logging
module provides exception and error methods for your usage, so
you can log the exception and Python traceback and also add some
extra information with error to elaborate on what might have
occurred and where in the code it occurred.

You should also log your interactions with databases, APIs, and external systems.
This will help you determine when your script has issues interacting with these sys‐
tems and ensure they are stable, reliable, or able to be worked around. Many of the
libraries you interact with also have their own ability to log to your log configuration.
For example, the requests module will log connection problems and requests
directly into your script log.

Even if you don’t set up any other monitoring or alerting for your script, you should
use logging. It’s simple, and it provides good documentation for your future self and
others. Logs are not the only solution, but they are a good standard and serve as a
foundation for the monitoring of your automation.

In addition to logging, you can set up easy-to-analyze alerting for your scripts. In the
following section, we’ll cover ways your script can message you about its success or
failure.

Adding Automated Messaging
One easy way to send reports, keep track of your scripts, and notify yourself of errors
is to use email or other messages sent directly from your scripts. There are many
Python libraries to help with this task. It’s good to begin by determining exactly what
type of messaging you need for your scripts and projects.

Ask yourself if any of the following apply to your script:

• It produces a report which needs to be sent to a particular list of recipients.
• It has a clear success/failure message.
• It is pertinent to other coworkers or collaborators.
• It provides results not easily viewed on a website or through a quick dashboard.

If any of these sound like your project, it’s likely a good candidate for some sort of
automated messaging.

Email
Emailing with Python is straightforward. We recommend setting up a separate script-
only email address through your favorite email provider (we used Gmail). If it doesn’t

Monitoring Your Automation | 403

www.it-ebooks.info

http://www.it-ebooks.info/

automatically integrate with Python out of the box, it’s likely there is a listing of the
proper configuration or a useful example configuration online, found via search.

Let’s take a look at a script we’ve used to send mail with attachments to a list of recipi‐
ents. We modified this code from a gist written by @dbieber, which was modified
from Rodrigo Coutinho’s “Sending emails via Gmail with Python” post:

#!/usr/bin/python
Adapted from
http://kutuma.blogspot.com/2007/08/sending-emails-via-gmail-with-python.html
Modified again from: https://gist.github.com/dbieber/5146518
config file(s) should contain section 'email' and parameters
'user' and 'password'

import smtplib
from email.MIMEMultipart import MIMEMultipart
from email.MIMEBase import MIMEBase
from email.MIMEText import MIMEText
from email import Encoders
import os
import ConfigParser

def get_config(env):
 config = ConfigParser.ConfigParser()
 if env == "DEV":
 config.read(['config/development.cfg'])
 elif env == "PROD":
 config.read(['config/production.cfg'])
 return config

def mail(to, subject, text, attach=None, config=None):
 if not config:
 config = get_config("DEV")
 msg = MIMEMultipart()
 msg['From'] = config.get('email', 'user')
 msg['To'] = ", ".join(to)
 msg['Subject'] = subject
 msg.attach(MIMEText(text))
 if attach:
 part = MIMEBase('application', 'octet-stream')
 part.set_payload(open(attach, 'rb').read())
 Encoders.encode_base64(part)
 part.add_header('Content-Disposition',
 'attachment; filename="%s"' % os.path.basename(attach))
 msg.attach(part)
 mailServer = smtplib.SMTP("smtp.gmail.com", 587)
 mailServer.ehlo()
 mailServer.starttls()
 mailServer.ehlo()
 mailServer.login(config.get('email', 'user'),

404 | Chapter 14: Automation and Scaling

www.it-ebooks.info

https://gist.github.com/dbieber/5146518
http://bit.ly/sending_gmail_python
http://www.it-ebooks.info/

 config.get('email', 'password'))
 mailServer.sendmail(config.get('email', 'user'), to, msg.as_string())
 mailServer.close()

def example():
 mail(['listof@mydomain.com', 'emails@mydomain.com'],
 "Automate your life: sending emails",
 "Why'd the elephant sit on the marshmallow?",
 attach="my_file.txt")

Python’s built-in smtplib library gives you a wrapper for SMTP, the standard
protocol for sending and receiving email.

Python’s email library helps create email messages and attachments and keeps
them in the proper format.

The get_config function loads the configuration from a series of local configu‐
ration files. We pass an environment variable, which is expected to be the string
"PROD" or "DEV" to signal whether it’s running locally ("DEV") or on our remote
production environment ("PROD"). If you only have one environment, you could
simply return the only configuration file in your project.

This line uses Python’s ConfigParser to read in the .cfg file and returns config
object.

Our mail function takes a list of email addresses as the to variable, the subject
and text of the email, an optional attachment, and an optional config argument.
The attachment is expected to be the name of a local file. The config should be a
Python ConfigParser object.

This line sets the default configuration in case it wasn’t passed. To be safe, we are
using the "DEV" configuration.

This code uses the ConfigParser object to pull the email address out of the con‐
fig file. This keeps the address secure and separate from our repository code.

This code unpacks the list of emails and separates them with commas and a
space. It expands the list of email addresses to a string, because that’s what our
MIME type expects.

If there is an attachment, this line begins the special handling for MIME multi‐
part standards needed to send attachments.

This code opens and reads the full file using the filename string passed.

Monitoring Your Automation | 405

www.it-ebooks.info

https://docs.python.org/2/library/smtplib.html
https://docs.python.org/2/library/email.html
http://www.it-ebooks.info/

If you’re not using Gmail, set these to match your provider’s host and port for
SMTP. Those should be easy to identify if there is good documentation. If there
isn’t, a simple search for “SMTP settings <your provider name>” should give you
the details.

This is some example code to give an idea of what this mail function is expecting.
You can see the data types expected (string, list, filename), and the order.

The simple Python built-in libraries smtplib and email help us quickly create and
send email messages using their classes and methods. Abstracting some of the other
parts of the script (such as saving your email address and password in your config) is
an essential part of keeping your script and your repository secure and reusable. A
few default settings ensure the script can always send email.

SMS and voice
If you’d like to integrate telephone messages into your alerting, you can use Python to
send text messages or make phone calls. Twilio is a very cost-efficient way to do so,
with support for messages with media and automated phone calls.

Before you get started with the API, you’ll need to sign up to get
your authorization codes and keys and install the Twilio Python
client. There’s a long list of code examples in the Python client’s
documentation, so if you might need to do something with voice or
text, it’s likely there is a good feature available.

Take a look at how easy it is to send a quick text:

from twilio.rest import TwilioRestClient
import ConfigParser

def send_text(sender, recipient, text_message, config=None):
 if not config:
 config = ConfigParser('config/development.cfg')

 client = TwilioRestClient(config.get('twilio', 'account_sid'),
 config.get('twilio', 'auth_token'))
 sms = client.sms.messages.create(body=text_message,
 to=recipient,
 from_=sender)

def example():
 send_text("+11008675309", "+11088675309", "JENNY!!!!")

We’ll use the Twilio Python client to interact directly with the Twilio API via
Python.

406 | Chapter 14: Automation and Scaling

www.it-ebooks.info

https://www.twilio.com
https://github.com/twilio/twilio-python
https://github.com/twilio/twilio-python
https://twilio-python.readthedocs.org/en/latest/
http://www.it-ebooks.info/

This line defines a function we can use to send a text. We’ll need the sender’s and
recipient’s phone numbers (prefaced with country codes) and the simple text
message we want to send, and we have the ability to also pass a configuration
object. We’ll use the configuration to authorize with the Twilio API.

This code sets up a client object, which will authorize using our Twilio account.
When you sign up for Twilio, you’ll receive an account_sid and an auth_token.
Put them in the configuration file your script uses, in a section named twilio.

To send a text, this code navigates to the SMS module in our client and calls the
message resource’s create method. As documented by Twilio, we can then send a
simple text message with only a few parameters.

Twilio works internationally and expects to see international-based dialing num‐
bers. If you’re unsure of the international dialing codes to use, Wikipedia has a
good listing.

If you are interested in having your script “talk” via Python, Python
text-to-speech can “read” your text over the phone.

Chat integration
If you’d like to integrate chat into your alerting, or if your team or collaborators com‐
monly use chat, there are many Python chat toolkits you can use for this purpose.
Depending on your chat client and needs, there’s likely a Python or API-based solu‐
tion, and you can use your knowledge of REST clients to go about connecting and
messaging the right people.

If you use HipChat, their API is fairly easy to integrate with your Python application
or script. There are several Python libraries to make simple messaging to a chatroom
or a person straightforward.

To get started using the HipChat API, you’ll first need to log in and get an API token.
You can then use HypChat, a Python library, to send a quick message to a chatroom.

First, install HypChat using pip:

pip install hypchat

Now, send a message using Python!

from hypchat import HypChat
from utils import get_config

Monitoring Your Automation | 407

www.it-ebooks.info

http://bit.ly/twilio_message
https://en.wikipedia.org/wiki/List_of_country_calling_codes
https://en.wikipedia.org/wiki/List_of_country_calling_codes
https://pyttsx.readthedocs.org/en/latest/
https://pyttsx.readthedocs.org/en/latest/
https://www.hipchat.com/docs/apiv2
https://www.hipchat.com/docs/apiv2/libraries
https://hipchat.com/account/api
https://github.com/RidersDiscountCom/HypChat
http://www.it-ebooks.info/

def get_client(config):
 client = HypChat(config.get('hipchat', 'token'))
 return client

def message_room(client, room_name, message):
 try:
 room = client.get_room(room_name)
 room.message(message)
 except Exception as e:
 print e

def main():
 config = get_config('DEV')
 client = get_client(config)
 message_room(client, 'My Favorite Room', "I'M A ROBOT!")

We use the HypChat library to talk to our chat client. The library initializes a new
client using our HipChat token, which we will keep stored in our config files.

This code uses the get_room method, which locates a room matching the string
name.

This line sends a message to a room or a user with the message method, and
passes it a simple string of what to say.

Always use try...except blocks with API-based libraries in case of connection
errors or API changes. This code prints the error, but you’d likely want it logged
to fully automate your script.

The get_config function used here is imported from a different script. We fol‐
low modular code design by introducing these helper functions and putting them
in individual modules for reuse.

If you want to log to chat, you can explore those options with HipLogging. Depend‐
ing on your needs and how your team works, you can set up your chat logging how
you’d like; but it’s nice to know you can always leave a note for someone where they
might see it!

If you’d rather use Google Chat, there are some great examples of how to do so using
SleekXMPP. You can also use SleekXMPP to send Facebook chat messages.

For Slack messaging, check out the Slack team’s Python client.

For other chat clients, we recommend doing a Google search for “Python <your client
name>.” Chances are someone has attempted to connect their Python code with that

408 | Chapter 14: Automation and Scaling

www.it-ebooks.info

https://github.com/invernizzi/hiplogging
http://bit.ly/sleekxmpp_send_msg
http://bit.ly/facebook_msg_sleekxmpp
https://github.com/slackhq/python-slackclient
http://www.it-ebooks.info/

client, or there’s an API you can use. You know how to use an API from your work in
Chapter 13.

With so many options for alerting and messaging about your script’s (and automa‐
tion’s) success or failure, it’s hard to know which one to use. The important part is to
choose a method your or your team regularly use and will see. Prioritizing ease of use
and integration with daily life is essential—automation is here to help you save time,
not to make you spend more time checking services.

Uploading and Other Reporting
If you need to upload your reports or figures to a separate service or file share as part
of your automation, there are terrific tools for those tasks. If it’s an online form or a
site you need to interact with, we recommend using your Selenium scraping skills
from Chapter 12. If it’s an FTP server, there is a standard FTP library for Python. If
you need to send your reporting to an API or via a web protocol, you can use the
requests library or the API skills you learned in Chapter 13. If you need to send
XML, you can build it using LXML (see Chapter 11).

No matter what service you are looking to speak to, it’s likely you have had some
exposure to communicating with that service. We hope you feel confident practicing
those skills and striking out on your own.

Logging and Monitoring as a Service
If your needs are larger than one script can handle, or you want to incorporate your
automation into a larger organizational framework, you might want to investigate
logging and monitoring as a service. There are many companies working to make the
lives of data analysts and developers easier by creating tools and systems to track log‐
ging. These tools often have simple Python libraries to send your logging or monitor‐
ing to their platform.

With logging as a service, you can spend more time working on
your research and scripts, and less time managing your monitoring
and logging. This can offload some of the “Is our script working or
not, and if so how well?” issues to the non-developers on your
team, as many of the services have nice dashboards and built-in
alerting.

Depending on the size and layout of your automation, you may need systems moni‐
toring as well as script and error monitoring. In this section, we’ll look at a few serv‐
ices that do both, as well as some more specialized services. Even if you don’t have a
large enough scale to justify them now, it’s always good to know what is possible.

Monitoring Your Automation | 409

www.it-ebooks.info

https://docs.python.org/2/library/ftplib.html
http://www.it-ebooks.info/

Logging and exceptions
Python-based logging services offer the ability to log to one central service while hav‐
ing your script(s) run on a variety of machines, either local or remote.

One such service with great Python support is Sentry. For a relatively small amount
of money per month, you can have access to a dashboard of errors, get alerts sent
based on exception thresholds, and monitor the error and exception types you have
on a daily, weekly, and monthly basis. The Python client for Sentry is easy to install,
configure, and use. If you are using tools like Django, Celery, or even simple Python
logging, Sentry has integration points so you don’t need to significantly alter your
code to get started. On top of that, the code base is constantly updated and the staff is
helpful in case you have questions.

Other options include Airbrake, which originally started as a Ruby-based exception
tracker and now supports Python, and Rollbar. It’s a popular market, so there will
likely be new ones launched before this book goes to print.

There are also services to pull in and parse your logs, such as Loggly and Logstash.
These allow you to monitor your logs on an aggregate level as well as parse, search,
and find issues in your logs. They are really only useful if you have enough logs and
enough time to review them, but are great for distributed systems with a lot of
logging.

Logging and monitoring
If you have distributed machines or you are integrating your script into your com‐
pany or university’s Python-based server environment, you may want to have robust
monitoring of not just Python, but the entire system. There are many services that
offer monitoring for system load database traffic, and web applications, as well as
automated tasks.

One of the most popular services used for this is New Relic, which can watch your
servers and system processes as well as web applications. Using MongoDB and AWS?
Or MySQL and Apache? New Relic plug-ins allow you to easily integrate logging for
your services into the same dashboards you are using for monitoring server and
application health. In addition, they offer a Python agent so you can easily log your
Python application (or script) into the same ecosystem. With all of your monitoring
in one place, it’s easier to spot issues and set up proper alerting so the right people on
your team immediately know about any problems.

Another service for systems and application monitoring is Datadog. Datadog allows
you to integrate many services into one dashboard. This saves time and effort and
allows you to easily spot errors in your projects, apps, and scripts. The Datadog
Python client enables logging of different events you’d like to monitor, but requires a
bit of customization.

410 | Chapter 14: Automation and Scaling

www.it-ebooks.info

https://getsentry.com/welcome/
https://github.com/getsentry/raven-python
http://bit.ly/sentry_python
http://bit.ly/sentry_python
https://airbrake.io/languages/python_bug_tracker
https://rollbar.com
https://www.loggly.com/
https://www.elastic.co/products/logstash
http://newrelic.com/
http://newrelic.com/plugins
http://bit.ly/new_relic_python
https://www.datadoghq.com/
https://www.datadoghq.com/product/integrations/
https://github.com/DataDog/datadogpy
https://github.com/DataDog/datadogpy
http://www.it-ebooks.info/

No matter what monitoring you use, or whether you decide to build your own or use
a service, it’s essential to have regular alerting, insight into the services you use, and
an understanding of the integrity of your code and automated systems.

When you depend on your automation to complete other parts of
your work and projects, you should make sure your monitoring
system is both easy to use and intuitive so you can focus on the big‐
ger parts of your projects without risking missing errors or other
issues.

No System Is Foolproof
As we’ve discussed in this chapter, relying entirely on any system is foolhardy and
should be avoided. No matter how bulletproof your script or system appears to be,
there’s an undeniable chance it will fail at some point. If your script depends on other
systems, they could fail at any point. If your script involves data from an API, service,
or website, there’s a chance the API or site will change or go down for maintenance,
or any number of other events could occur causing your automation to fail.

If a task is absolutely mission critical, it should not be automated. You can likely auto‐
mate parts of it or even most of it, but it will always need supervision and a person to
ensure it hasn’t failed. If it’s important but not the most essential piece, the monitor‐
ing and alerting for that piece should reflect its level of importance.

As you dive deeper into your own data wrangling and automation,
you will spend less time on building higher-quality tasks and
scripts, and more time on troubleshooting, critical thinking, and
applying your analytical know-how and area knowledge to your
work. Automation can help you do this, but it’s always good to have
a healthy caution regarding what important tasks you automate,
and how.

As the programs you’ve automated mature and progress, you will not only improve
the automation you have and make it more resilient, but also increase your knowl‐
edge of your code base, Python, and your data and reporting.

Summary
You’ve learned how to automate much of your data wrangling using small- and large-
scale solutions. You can monitor and keep track of your scripts and the tasks and sub‐
tasks with logging, monitoring, and cloud-based solutions—meaning you can spend
less time keeping track of things and more time actually reporting. You have defined
ways automation can succeed and fail and worked to help create a clear set of guide‐

No System Is Foolproof | 411

www.it-ebooks.info

http://www.it-ebooks.info/

lines around automation (with an understanding that all systems can and will fail
eventually). You know how to give other teammates and colleagues access so they can
run tasks themselves, and you’ve learned a bit about how to deploy and set up Python
automation.

Table 14-3 summarizes the new concepts and libraries introduced in this chapter.

Table 14-3. New Python and programming concepts and libraries

Concept/Library Purpose

Running scripts
remotely

Having your code run on a server or other machine so you don’t have to worry about your own
computer use interfering.

Command-line
arguments

Using argv to parse command-line arguments when running your Python script.

Environment variables Using environment variables to help with script logic (such as what server your code is running on
and what config to use).

Cron usage Coding a shell script to execute as a cron task on your server or remote machine. A basic form of
automation.

Configuration files Using configuration files to define sensitive or special data for your Python script.

Git deployment Using Git to easily deploy your code to one or more remote machine(s).

Parallel processing Python’s multiprocessing library gives you easy access to run many processes at the same
time while still having shared data and locking mechanisms.

MapReduce With distributed data, you can map data according to a particular feature or by running it through a
series of tasks, and then reduce that data to analyze it in aggregate.

Hadoop and Spark Two tools used in cloud computing to perform MapReduce operations. Hadoop is better for an
already defined and stored dataset, and Spark is preferred if you have streaming, extra-large, or
dynamically generated data.

Celery (task queue use
and management)

Gives you the ability to create a task queue and manage it using Python, allowing you to automate
tasks that don’t have a clear start and end date.

logging module Built-in logging for your application or script so you can easily track errors, debug messages, and
exceptions.

smtp and email
modules

Built-in email alerting from your Python script.

Twilio A service with a Python API client for use with telephone and text messaging services.

412 | Chapter 14: Automation and Scaling

www.it-ebooks.info

http://www.it-ebooks.info/

Concept/Library Purpose

HypChat A Python API library for use with the HipChat chat client.

Logging as a service Using a service like Sentry or Logstash to manage your logging, error rates, and exceptions.

Monitoring as a service Using a service like New Relic or Datadog to monitor your logs as well as service uptimes, database
issues, and performance (e.g., to identify hardware problems).

Along with the wealth of knowledge you’ve taken from previous chapters in this
book, you should now be well prepared to spend your time building quality tools and
allowing these tools to do the grunt work for you. You can throw out those old
spreadsheet formulas and use Python to import data, run analysis, and deliver reports
directly to your inbox. You can truly let Python manage the rote tasks, like a robotic
assistant, and move on to the more critical and challenging parts of your reporting.

Summary | 413

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 15

Conclusion

Congratulations! You’ve reached the end of the book. When you first began, you
likely knew little Python and you hadn’t used programming to investigate data.

Your experience now should be quite different. You’ve gained knowledge and experi‐
ence finding and cleaning data. You’ve honed your skills by focusing your questions
and determining what you can and cannot answer given a particular dataset. You can
write simple regexes and complex web scrapers. You have learned how to store and
deploy your code and connect with databases. You can scale your data and processes
in the cloud and manage your data wrangling via automation.

The fun doesn’t have to end here, however! There is plenty more to learn and do in
your career as a data wrangler. You can take the skills and tools you have learned here
and continue to push your knowledge, and in turn the boundaries of the field of data
wrangling. We encourage you to advance your quest for excellence and keep asking
difficult questions of your data, processes, and methods.

Duties of a Data Wrangler
As we’ve established throughout this book and our investigations, the data out there
and the conclusions you can reach as a data wrangler are vast. But along with those
opportunities come responsibilities.

There are no data wrangling police; however, you have learned some ethics through‐
out our book. You’ve learned to be a conscientious web scraper. You’ve learned to pick
up the phone and ask for more information. You’ve learned to explain and document
your process when you present your findings. You’ve learned how to ask hard ques‐
tions about difficult topics, particularly when the data sources may have other
motivations.

415

www.it-ebooks.info

http://www.it-ebooks.info/

As you pursue learning and growing as a data wrangler, your ethical sense will grow
and help guide and challenge you in your work and processes. In a way, you are now
an investigative journalist. The conclusions you reach and the questions you ask can
and will make a difference in your field. With that knowledge, you have the burden of
duty.

Your duties include:

• Using your knowledge, skills, and ability for just and good causes
• Helping contribute to the knowledge of others around you
• Giving back to the community that helped you
• Challenging opposition to the ethics you have learned so far and continue to

develop

We encourage you to step up and meet these challenges through your career as a data
wrangler. Do you like working with others and teaching? Become a mentor! Do you
enjoy a particular open source package? Become a code or documentation contribu‐
tor! Have you been researching an important social or health issue? Contribute your
findings to the academic or social community! Have you experienced difficulties
from a particular community or source? Share your story with the world.

Beyond Data Wrangling
Your skills have developed over the course of this book, but you still have much to
learn. Depending on your skillset and interests, there are quite a few areas for further
exploration.

Become a Better Data Analyst
This book offered an introduction to statistical and data analysis. If you want to truly
hone your statistical and analytical skills, you’ll want to spend more time reading
about the science behind the methods as well as learning some of the more intensive
Python packages, give you more power and flexibility when analyzing your datasets.

To learn more advanced statistics, regression models and the math behind data analy‐
sis are essential topics of study. If you haven’t taken a statistics course, EdX has a great
archived course from the University of California, Berkeley. If you’d like to explore
with a book, Think Stats by Allen Downey (O’Reilly) is a great introduction to statisti‐
cal math concepts and also uses Python. Cathy O’Neill and Rachel Schutt’s Doing
Data Science (also from O’Reilly) provides a deeper analysis of the field of data sci‐
ence.

If you’re interested in learning the scipy stack and more about how Python can help
you perform more advanced math and statistics, you’re in luck. One of the main con‐

416 | Chapter 15: Conclusion

www.it-ebooks.info

http://bit.ly/berkeleyx_stat_2_1x
http://bit.ly/berkeleyx_stat_2_1x
http://shop.oreilly.com/product/0636920034094.do
http://shop.oreilly.com/product/0636920028529.do
http://shop.oreilly.com/product/0636920028529.do
http://www.it-ebooks.info/

tributors to pandas, Wes McKinney, has written a book that covers pandas in depth
(Python for Data Analysis; O’Reilly). The pandas documentation is also a great place
to start learning. You played around a bit in Chapter 7 with numpy. If you are interes‐
ted in learning some of the numpy internals, check out the SciPy introduction to the
basics.

Become a Better Developer
If you really want to hone your Python skills, Luciano Ramalho’s Fluent Python
(O’Reilly) discusses some more in-depth design patterns in Python thinking. We also
highly recommend taking a look through recent videos of Python events around the
world and investigating topics that interest you.

If this book is your first introduction to programming, you may want to take an
introduction to computer science course. If you want a self-study option, Coursera
offers one from Stanford University. If you’d like an online textbook covering some of
the theory behind computer science, we recommend Structure and Interpretation of
Computer Programs, by Harold Abelson and Gerald Jay Sussman (MIT Press).

If you’re interested in learning more development principles through building and
working with others, we recommend finding a local meetup group and getting
involved. Many such groups host local and remote hackathons, so you can work on
code alongside others and learn by doing.

Become a Better Visual Storyteller
If you were particularly interested in the visual storytelling parts of this book, there
are many ways to further your knowledge of that field. If you want to continue with
the libraries we’ve used, we highly recommend going through the Bokeh tutorials and
experimenting with your Jupyter notebooks.

Learning JavaScript and some of the popular visualization libraries from the JS com‐
munity will help you become a better visual storyteller. Square offers an introduction
to a D3 course with a brief introduction to the popular JavaScript library D3.

Finally, if you want to study some of the theories and ideas behind visual storytelling
from a data analysis standpoint, we recommend Edward Tufte’s Visual Display of
Quantitative Information (Graphics Press).

Become a Better Systems Architect
If learning how to scale, deploy, and manage systems was particularly interesting to
you, we have barely scratched the surface in terms of the opportunities within the sys‐
tems sphere.

Beyond Data Wrangling | 417

www.it-ebooks.info

http://shop.oreilly.com/product/0636920023784.do
http://bit.ly/10_min_to_panda
http://bit.ly/numpy_basics
http://bit.ly/numpy_basics
http://shop.oreilly.com/product/0636920032519.do
http://pyvideo.org/
http://pyvideo.org/
https://www.coursera.org/course/cs101
https://www.coursera.org/course/cs101
http://bit.ly/abelson_sussman_sicp
http://bit.ly/abelson_sussman_sicp
http://bit.ly/bokeh_tutorials
https://square.github.io/intro-to-d3/
https://square.github.io/intro-to-d3/
http://d3js.org/
http://bit.ly/tufte_visual_display
http://bit.ly/tufte_visual_display
http://www.it-ebooks.info/

If you’re interested in learning some more Unix, the University of Surrey has a short
introduction covering some good concepts. The Linux Documentation Project also
has a short introduction to bash programming.

We highly recommend taking time to learn Ansible, a scalable and flexible server and
systems management solution. If you’re more interested in scaling data solutions,
Udacity offers an Intro to Hadoop and MapReduce course. You should also check out
Stanford’s introduction to Apache Spark and the PySpark programming guide.

Where Do You Go from Here?
So, where do you go now? You have a litany of new skills, and you have the ability to
question both your own assumptions and the data you find. You also have a working
knowledge of Python and numerous useful libraries at your fingertips.

If you don’t yet have a passion for a particular field or dataset, you’ll want to discover
ways to continue your progress and advancement as a data wrangler with new fields
of study. There are many great data analysts out there writing inspirational stories.
Here are a few:

• FiveThirtyEight, once a blog started by Nate Silver for The New York Times, is
now a site with numerous writers and analysts investigating a variety of topics.
After the Ferguson grand jury decision to not indict Darren Wilson, FiveThir‐
tyEight published an article showing the outcome was an outlier. With controver‐
sial topics, being able to show a data trend or tendency can help take some of the
emotions out of the story and reveal what the data is actually saying.

• A study of income gaps by The Washington Post used tax and census data to con‐
clude the “ol’ boy network” was still alive in terms of job acquisition and initial
salaries, but usually flattened or showed no correlation after those initial jobs
were acquired.

• We’ve studied some of the impacts of groups in Africa who use child labor,
including for mining conflict minerals. A recent report by Amnesty International
and Global Witness found most American firms are not adequately checking
their supply pipelines to ensure their products do not use conflict minerals.

There are millions of untold stories in the world. If you have a passion or a belief, it’s
likely your insights and data wrangling skills can help people and communities. If you
don’t have a passion yet, we encourage you to keep learning by keeping up with data
analysis in the news, documentaries, and online.

No matter where your interests lie, there is a wide world of possibilities available to
deepen your learning and grasp of the concepts introduced in this book. Whatever
sparked your interest the most is a great path for future learning. We hope this book
is just a taste of what you’ll be doing throughout your career as a data wrangler.

418 | Chapter 15: Conclusion

www.it-ebooks.info

http://www.ee.surrey.ac.uk/Teaching/Unix/index.html
http://www.ee.surrey.ac.uk/Teaching/Unix/index.html
http://tldp.org/HOWTO/Bash-Prog-Intro-HOWTO.html
http://docs.ansible.com/ansible/intro_getting_started.html
http://bit.ly/intro_hadoop_mapreduce
http://bit.ly/spark_intro
http://bit.ly/pyspark_api
http://fivethirtyeight.com/
http://bit.ly/ferguson_outlier
http://bit.ly/rich_kids_game_system
http://bit.ly/supply_disclosure
http://bit.ly/supply_disclosure
http://www.it-ebooks.info/

APPENDIX A

Comparison of Languages Mentioned

Often when you’re working with a programming language, others will ask why you
use that language. Why not use X or Y? X or Y may vary depending on what the per‐
son knows and whether they are an avid developer. It is good to understand why they
are asking that question, and to think about your reply—why Python? This appendix
compares Python to other useful languages so you can answer these questions and
gain some insight into our programming choices.

C, C++, and Java Versus Python
When compared with C, C++, and Java, Python is fairly easy to learn, especially for
those without a computer science background. As such, many folks who may have
started in your same position have built add-ons and helpful tools to make Python
more powerful and useful for the data science and data wrangling realms.

As for the technical differences, Python is a high-level language, while C and C++ are
low-level languages. Java is high level, but has some low-level qualities. What does
this mean? A high-level language abstracts interactions with the computer architec‐
ture—that is, it allows you to type code words (say, a for loop or variable definition),
which the language then compiles down to code a computer can execute—while a
low-level language deals with them directly. Low-level computer languages can run
faster than high-level languages and allow for more direct control over a system to
optimize things like memory management. High-level languages are easier to learn
because most of those lower-level tasks are already managed for you.

For the purposes of the exercises taught in this book, there is no need to manipulate
system control or speed things up by several seconds—so we do not need a low-level
language. While Java is a high-level language, it has a higher learning curve than
Python, and it would take longer for you to ramp up and get started.

419

www.it-ebooks.info

http://www.it-ebooks.info/

R or MATLAB Versus Python
Python has libraries (supplemental code) with many of the same capabilities as R and
MATLAB. Those libraries are called pandas and numpy. These libraries handle specific
tasks related to big data and statistical analysis. If you would like to learn more about
them, you should check out Wes McKinney’s book Python for Data Analysis. If you
have a strong background in R or MATLAB, you can still use those tools for data
wrangling. If that is the case, Python is a great supplemental tool. However, having all
the pieces of your workflow in the same language makes data processing easier and
more maintainable. By learning both R (or MATLAB) and Python, you can pick and
choose which language you would like to use based on the needs of a particular
project, giving you extra adaptability and convenience.

HTML Versus Python
Explaining why you don’t use HTML to wrangle data is like explaining why you don’t
put water in a gas tank—you just don’t. It is not made for that. HTML stands for
HyperText Markup Language, and is the language that provides the structure for web
pages to be displayed in a browser. Just like we talked about in Chapter 3, when we
discussed XML, we can use Python to parse HTML, but not the other way around.

JavaScript Versus Python
JavaScript, which should not be confused with Java, is a language that adds interactiv‐
ity and functionality to a web page. It runs in the browser. Python is divorced from
the browser and runs on the computer system. Python has a rich collection of libra‐
ries that add functionality relevant to data analysis. JavaScript has extra functionality
relating to browser-specific purposes. You can scrape the web and build charts with
JavaScript, but not run statistical aggregation.

Node.js Versus Python
Node.js is a web platform, while Python is a language. There are frameworks written
in Python similar to Node.js, like Flask and Django, but Node.js is written in the Java‐
Script language. While JavaScript is predominantly used on the Node.js allows for
you to use JavaScript on the backend. If you use something like Flask or Django, you
will probably have to learn JavaScript to use for your frontend needs. However, most
of the work in this book is aimed at backend processes and larger data processing.
Python is more accessible, easier to learn, and has specific data processing libraries
already created for data wrangling use. For that reason, we use Python.

420 | Appendix A: Comparison of Languages Mentioned

www.it-ebooks.info

http://pandas.pydata.org/
http://www.numpy.org/
http://shop.oreilly.com/product/0636920023784.do
http://www.it-ebooks.info/

Ruby and Ruby on Rails Versus Python
You may have heard of Ruby on Rails, which is a popular web framework based on
the Ruby language. There are many for Python—Flask, Django, Bottle, Pyramid,
etc.—and Ruby is also often used without a web framework. We are using Python for
its fast processing and data wrangling capabilities—not its web abilities. While we do
talk about displaying data, if your goal is to build a website, you are reading the
wrong book.

Comparison of Languages Mentioned | 421

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX B

Python Resources for Beginners

This appendix lists groups and resources for new Python developers. This list is by no
means comprehensive, but it provides an introduction to many of the sites, forums,
chat rooms, and in-person groups you can visit and use in your journey as an aspir‐
ing Python developer.

Online Resources
• Stack Overflow is a really useful website where you can ask, view, and answer

questions regarding coding and Python. The site supports posting code with
questions, upvoting answers, and searching through the massive archives of
already asked questions. If you are stuck on something, it’s likely there is a clue in
a Stack Overflow answer waiting for you!

• The Python website is a great tool for researching more about what libraries
might be available to help in your development. If you have a question about how
something in the Python standard library behaves or what the recommended
additional libraries to use are, the Python website is a great place to start.

• Read the Docs is a useful website where many Python libraries host their docu‐
mentation. This is a great place to go if you are looking for more information on
how to use a particular library.

In-Person Groups
• PyLadies is a Women in Engineering group started to help promote diversity of

all kinds in Python. There are chapters around the globe, an active IRC channel
on freenode, and numerous workshops and other helpful tools on the PyLadies

423

www.it-ebooks.info

http://stackoverflow.com
http://python.org
https://readthedocs.org/
http://pyladies.com
http://www.it-ebooks.info/

website. Most chapters are open to all members, but check out your local chap‐
ter’s meetup group to ensure the meetups are not gender-specific.

• Boston Python is one of the largest Python meetups in the world. Run by a
dynamic group of well-known developers and educators, this group helps run
workshops, project nights, and many different educational events. If you are ever
in the Boston area, check them out!

• PyData is an organization helping to build a community around the Python and
data analysis community. They hold worldwide meetups and conferences, and it’s
likely you can also find a local meetup chapter (or start a new one) in your area.

• Meetup.com is a site where many technical educational events are posted. We
recommend searching for Python and data meetups in your area. It’s easy to sign
up and get alerts for new meetup groups that match your interests so you can
meet people who have similar interests in data and Python.

• Django Girls is a Women in Engineering group aimed at promoting Python
development via the major Python web development framework, Django. There
are active chapters all over the world with workshops and trainings.

424 | Appendix B: Python Resources for Beginners

www.it-ebooks.info

http://www.meetup.com/bostonpython/
http://pydata.org/
http://www.meetup.com/
https://djangogirls.org/
http://www.it-ebooks.info/

APPENDIX C

Learning the Command Line

One powerful development tool is the ability to navigate your computer using only
the command line. Whatever operating system you use, knowing how to directly
interact with your computer will pay off in your data wrangling and coding career.
We aren’t saying you need to become a systems administrator, but it’s good to be
somewhat adept at maneuvering via the command line.

One of the greatest feelings as a developer is being able to debug both systems and
code problems you encounter. Understanding and working with your computer via
the command line will give you some insight into those problems. If you encounter
system errors and use the debugging tips you’ve learned throughout this book, you’ll
likely learn more about your own computer, the operating system you use, and how
to better interact via the command line. Then, when you encounter system errors in
your Python code, you’ll be one step ahead when debugging and fixing those issues.

In this appendix, we’ll cover the basics of bash (used on Macs and many Linux instal‐
lations) as well as the Windows cmd and PowerShell utilities. We will only provide an
introduction here, but we encourage you to continue your learning and engagement.
We’ve included suggestions for further reading in each section.

Bash
If you’re using a bash-based command line, what you learn as you navigate it will be
applicable to any bash-based client, regardless of the operating system you are cur‐
rently using…cool! Bash is a shell (or command-line) language with a lot of function‐
ality. Let’s get started learning bash by covering how to navigate files on your
computer.

425

www.it-ebooks.info

http://www.it-ebooks.info/

Navigation
Navigating your computer from the command line will help you understand how to
do this with Python, and remaining in your terminal or text editor will keep you
focused.

Let’s start with the basics. Open up your terminal. It will likely open in ~, which signi‐
fies your home directory. If you are using Linux, this is likely /<home/
your_computer_name>. If you are using a Mac, it is likely /Users/<your_name>. To
see what folder you are in, type the following:

pwd

You should see a response like this:

/Users/katharine

or:

/home/katharine

pwd stands for “print working directory.” You are asking bash to tell you what folder
(or directory) you are in currently. This can be very helpful when first learning to
navigate via the command line, especially if you want to double-check you are in the
proper folder.

Another useful command is to see what files are in a folder. To see what files are in
your current working directory, type:

ls

You should see a response similar to this:

Desktop/
Documents/
Downloads/
my_doc.docx
...

Depending on your operating system, the contents will vary, and they may have dif‐
ferent colors. ls means “list.” You can also call ls with additional arguments, called
flags. These arguments will change the output. Try this:

ls -l

The output should be a list of columns, the final one being the same list you saw
using only ls. The -l flag shows a detailed (long) view of your directory contents. It
shows you the number of files and directories contained therein, as well as the per‐
missions, creator’s name, group ownership, size, and last-modified date of each.
Here’s an example:

426 | Appendix C: Learning the Command Line

www.it-ebooks.info

http://www.it-ebooks.info/

drwxr-xr-x 2 katharine katharine 4096 Aug 20 2014 Desktop
drwxr-xr-x 22 katharine katharine 12288 Jul 20 18:19 Documents
drwxr-xr-x 26 katharine katharine 24576 Sep 16 11:39 Downloads

This level of detail can help you determine any problems you are having with permis‐
sions, and it allows you to see file sizes and other information. ls can also list any
directory you pass to it. Try checking what’s in your downloads folder (type the
following):

ls -l ~/Downloads

You’ll see a long output similar to the previous output example but listing all of the
files and directories in the Downloads folder.

Now that you know how to list files from different folders, let’s investigate how to
change your current folder. We use the command cd to “change directory.” Try this:

cd ~/Downloads

Now when you test what folder you are in using pwd and check the files in the folder
using ls you should notice you are in your downloads folder. What if you wanted to
move back to your home folder? We know the home folder is the parent folder. You
can navigate to a parent folder using ... Try the following:

cd ..

Now you are back in your home folder. In bash, .. means “go up/back one directory.”
You can also chain these together to go back two directories, like so: cd ../...

When moving around or selecting files in your command line, you
should be able to use Tab to autocomplete file and folder names.
Simply press Tab after you have typed the first letter or two of the
name of the file or folder you want to select, and you should see
different matching options (helping you spell and complete it), or,
if there are no other files with similar names, the command line
will autocomplete it for you. This helps you save time and typing!

You should now feel more comfortable moving around using your command line.
Next, we’ll learn about how to move and change files using the command line.

Modifying Files
Moving, copying, and creating files with bash is easy. Let’s begin by creating a new
file. First, navigate to your home directory (cd ~). Then, type the following:

touch test_file.txt

After that, go ahead and type ls. You should see that there is a new file called
test_file.txt. touch can be used to create files that don’t already exist. The command

Learning the Command Line | 427

www.it-ebooks.info

http://www.it-ebooks.info/

will look for a file of that name; if that file exists, it will update the last-modified time‐
stamp but make no changes; if it doesn’t exist, it will create the file.

Atom Shell Commands
If you are using Atom.io as your text editor, you can open this file (or any file) easily
into Atom using the following command:

atom test_file.txt

If you get an error, you likely don’t have the command-line options installed. To
install them, open up the command palette by pressing Shift-Cmd-P and run the
command called Install Shell Commands.

To see a list of all command-line options for Atom, type atom --help.

Now that we have a file to use, let’s try copying it into our downloads folder:

cp test_file.txt ~/Downloads

Here we are saying, “copy test_file.txt into ~/Downloads.” Because bash knows ~/
Downloads is a folder, it will automatically copy the file into the folder. If we wanted
to copy the file and change its name, we could write something like this:

cp test_file.txt ~/Downloads/my_test_file.txt

What we are doing with this command is telling bash to copy the test file into the
downloads folder and call the copy my_test_file.txt. Now your downloads folder
should have two copies of this test file: one with the original name, and one with this
new name.

If you need to run a command more than once, you can go
through your command-line history by simply pressing the up
arrow key. If you want to see all recent command-line history, type
history.

Sometimes you don’t want to copy files, but instead want to move them or rename
them. Using bash, we can move and rename files using the same command: mv. Let’s
begin by renaming the file we created in our home folder:

mv test_file.txt empty_file.txt

What we are telling bash to do here is “move the file named test_file.txt to a file
named empty_file.txt.” If you use ls you should no longer see a test_file.txt, but you
should now see an empty_file.txt. We have renamed our file by simply “moving” it.
We can also use mv to move files between folders:

428 | Appendix C: Learning the Command Line

www.it-ebooks.info

https://atom.io
http://www.it-ebooks.info/

mv ~/Downloads/test_file.txt .

Here we are saying, “move the downloaded folder’s test_file.txt into here“. In bash, .
stands for your working directory (just like .. stands for the folder “above” your cur‐
rent directory). Now, if you use ls you will notice you have a test_file.txt folder in
your home folder again. You can also use ls ~/Downloads to see your downloads
folder no longer has the file.

Finally, you might want to delete files using the command line. To do so, you can use
the rm, or remove, command. Try the following:

rm test_file.txt

Now when you ls you’ll see you have removed the test_file.txt from the folder.

Unlike deleting files with your mouse, deleting files with the com‐
mand line really deletes them. There is no “Trash” you can go into
to recover them, so use rm with care and set up regular scheduled
backups for your computer and code.

Now that you know how to move, rename, copy, and delete files using bash, we’ll
move on to executing files from the command line.

Executing Files
Executing files using bash is fairly straightforward. As you might have already learned
in Chapter 3, to execute a Python file, you simply need to run:

python my_file.py

Where my_file.py is a Python file.

For most languages you use and program, simply typing the name
of the language (python, ruby, R) and then the filename (with the
proper file path, or file location on your computer) will work. If
you are having trouble executing files using a particular language,
we recommend searching the Web for “command-line options”
along with the language name.

There are other execution commands you will come across as a Python developer.
Table C-1 shows some of them, so you can familiarize yourself with commands you
may need to install and run extra libraries.

Learning the Command Line | 429

www.it-ebooks.info

http://www.it-ebooks.info/

Table C-1. Bash for execution

Command Use case More documentation

sudo Executing the following command as a sudo or
(super) user. Usually necessary if you are
modifying core pieces of the filesystem or
installing packages.

https://en.wikipedia.org/wiki/Sudo

bash Executing a bash file or moving back into a
bash shell.

http://ss64.com/bash/

./configure Running configuration setup on a package
(first step when installing a package from
source).

https://en.wikipedia.org/wiki/GNU_build_system
#GNU_Autoconf

make Executing a makefile after configuration to
compile the code and prepare for installation
(second step when installing a package from
source).

http://www.computerhope.com/unix/umake.htm

make install Executing the code compiled with make and
installing the package on your computer (final
step when installing a package from source).

http://www.codecoffee.com/tipsforlinux/articles/
27.html

wget Executing a call to a URL and downloading the
file located at that URL (good for downloading
packages or files).

http://www.gnu.org/software/wget/manual/wge
t.html

chown Changing ownership of a file or folder. Often
used with chgrp to change the group of a
file. This can be useful if you need to move
files so a different user can execute them.

http://linux.die.net/man/1/chown

chmod Changing the permissions of a file or folder,
often to make it executable or available for a
different type of user or group.

http://ss64.com/bash/chmod.html

As you use your command line, you’ll likely come across a variety of other com‐
mands and documentation. We recommend you take time to learn, use, and ask
questions; bash is another language, and it will take time to learn its quirks and uses.
Before we finish our command-line introduction, we’d like to introduce you to using
bash to search for files or file contents.

430 | Appendix C: Learning the Command Line

www.it-ebooks.info

https://en.wikipedia.org/wiki/Sudo
http://ss64.com/bash/
https://en.wikipedia.org/wiki/GNU_build_system#GNU_Autoconf
https://en.wikipedia.org/wiki/GNU_build_system#GNU_Autoconf
http://www.computerhope.com/unix/umake.htm
http://www.codecoffee.com/tipsforlinux/articles/27.html
http://www.codecoffee.com/tipsforlinux/articles/27.html
http://www.gnu.org/software/wget/manual/wget.html
http://www.gnu.org/software/wget/manual/wget.html
http://linux.die.net/man/1/chown
http://ss64.com/bash/chmod.html
http://www.it-ebooks.info/

Searching with the Command Line
Searching for files and searching inside files is relatively easy in bash and can be done
in numerous ways. We’ll show you a few options to get started. First, we will use a
command to search for text in a file. Let’s start by downloading a file using wget:

wget http://corpus.byu.edu/glowbetext/samples/text.zip

This should download a text corpus we can use to search. To unzip the text into a new
folder, simply type:

mkdir text_samples
unzip text.zip text_samples/

You should now have a bunch of text corpus files in your new folder, text_samples.
Change into that directory using cd text_samples. Let’s now search inside those files
using a tool called grep:

grep snake *.txt

What you are telling bash to do here is search for the string snake in any file in this
folder whose name ends with .txt. You can learn more about wildcard characters in
“RegEx Matching” on page 181; however, * almost always stands for a wildcard and
can be used to mean “any matching string.”

When you ran that command you should have seen some matching text fly by. grep
will return any lines from any matching file containing the search string. This is
incredibly useful if you have a large repository and you want to find which files con‐
tain the function you need to update or change, for example. grep also has some extra
arguments and options you can pass if you want to print surrounding lines.

To see options for any bash command, simply type the command
followed by a space and then --help. Type grep --help and read
about some of the grep’s extra options and features.

Another neat tool is cat. It simply prints out the contents of whatever file you iden‐
tify. This can be useful especially if you need to “pipe” output somewhere else. In
bash, the | character can be used to string together a series of actions you wish to
perform with your files or text. For example, let’s cat the contents of one of our files
and then use grep to search the output:

cat w_gh_b.txt | grep network

What we did was first return the full text of the file w_gh_b.txt and then “pipe” that
output to grep, which then searched for the word network and returned the lines con‐
taining it to our command line.

Learning the Command Line | 431

www.it-ebooks.info

http://www.it-ebooks.info/

We can do the same type of pipe using our bash history. Try this:

history | grep mv

This command lets you find and reuse commands you may have forgotten as you
learn bash.

Let’s take our search a step further and look for files. First, we are going to use a com‐
mand called find, which looks for matching filenames and can be used to traverse
child directories and search for matching files there as well. Let’s search for any text
files in our current folder or child folders:

find . -name "*.txt" -type f

What we are saying here is find (starting in this folder and then going through all
child folders) files with a filename that matches any string but ends in .txt and that
are file type f (meaning a normal file, rather than a directory, signified by type d). You
should see a list of matching filenames as output. Now, let’s pipe those files so we can
grep them:

find . -name "*.txt" -type f | xargs grep neat

What we are telling bash to do here is, “find those same text files, but this time search
those files for the word neat.” We use xargs so we can properly pipe the find output
to grep. xargs isn’t needed for all piping, but it’s useful when using find as the find
command doesn’t send output uniformly.

You’ve learned a few neat tricks for searching and finding, which can be useful, espe‐
cially as the code and projects you are working with grow larger and more involved.
We’ll leave you with some more resources and reading on the topic.

More Resources
There are a lot of great bash resources on the Internet. The Linux Documentation
Project has a great guide for beginners which takes you through some more advanced
bash programming. O’Reilly also has a great bash Cookbook that can jumpstart your
learning process.

Windows CMD/Power Shell
The Windows command line (now also supplemented with PowerShell), or cmd, is a
powerful DOS-based utility. You can use the same syntax across Windows versions
and server instances, and learning to navigate that syntax can help you be a more
powerful programmer for Python and any other languages you choose to learn.

432 | Appendix C: Learning the Command Line

www.it-ebooks.info

https://en.wikipedia.org/wiki/Xargs
http://wiki.bash-hackers.org/scripting/tutoriallist
http://www.tldp.org/LDP/Bash-Beginners-Guide/html/
http://www.tldp.org/LDP/Bash-Beginners-Guide/html/
http://shop.oreilly.com/product/9780596526788.do
https://en.wikipedia.org/wiki/Windows_PowerShell
http://www.it-ebooks.info/

Navigation
Navigating files with cmd is very straightforward. Let’s begin by opening the cmd util‐
ity and taking a look at our present directory. Type:

echo %cd%

What this is telling cmd is that you want to echo (or print out) %cd%, which is the
current directory. You should see a response similar to this:

C:\Users\Katharine>

To list all of the files in your present directory, type the following:

dir

You should see output similar to this:

13.03.2015 16:07 <DIR> .ipython
11.09.2015 19:05 <DIR> Contacts
11.09.2015 19:05 <DIR> Desktop
11.09.2015 19:05 <DIR> Documents
11.09.2015 19:05 <DIR> Downloads
11.09.2015 19:05 <DIR> Favorites
10.02.2014 15:15 <DIR> Intel
11.09.2015 19:05 <DIR> Links
11.09.2015 19:05 <DIR> Music
11.09.2015 19:05 <DIR> Pictures
13.03.2015 16:26 <DIR> pip
11.09.2015 19:05 <DIR> Saved Games

dir also has many options you can use to sort, group, or show more information.
Let’s take a look at our Desktop folder.

dir Desktop /Q

We are asking cmd to show the files in the Desktop directory, and to show the owners
for those files. You should see the owner of each file as the first part of the filename
(e.g., MY-LAPTOP\Katharine\backupPDF). This can be tremendously useful in seeing
your folders and files. There are also some great options for showing subfolders and
sorting by last-modified timestamps.

Let’s navigate to our Desktop folder. Type the following:

chdir Desktop

Now when you check your current directory by typing echo %cd%, you should see a
change. To navigate to a parent folder, simply use ... For example, if we wanted to
navigate to the parent folder of our current directory, we could type:

chdir ..

You can also string together these “parent folders” symbols (chdir ..\.. to go into
the grandparent folder, etc.). Depending on your file structure, you may receive an

Learning the Command Line | 433

www.it-ebooks.info

http://ss64.com/nt/dir.html
http://www.it-ebooks.info/

error if there is no parent to your current folder (i.e., you are at the root of your file‐
system).

To get back to your home directory, simply type:

chdir %HOMEPATH%

You should end up back in the first folder we used. Now that we can navigate using
cmd, let’s move on to creating, copying, and modifying files.

Modifying Files
To start with, let’s create a new file we can use to modify:

echo "my awesome file" > my_new_file.txt

If you use dir to take a look at the files in your folder, you should now see
my_new_file.txt. If you open that file up in your text editor, you can see we wrote “my
awesome file” in the file. If you are using Atom, you can launch Atom directly from
your cmd (see “Atom Shell Commands” on page 428).

Now that we have that file, let’s try copying it to a new folder:

copy my_new_file.txt Documents

Now if we list our documents using:

dir Documents

we should see my_new_file.txt was successfully copied there.

For easy typing, you can use Tab to autocomplete filenames and
paths. Try it out by typing copy my and then hitting Tab. cmd
should be able to guess you meant the my_new_file.txt file and fill
in the file name for you.

We might also want to move or rename files. To move a file using cmd, we can use the
move command. Try the following:

move Documents\my_new_file.txt Documents\my_newer_file.txt

Now, if you list the files in your Documents directory, you should see there is no
longer a my_new_file.txt and now just a my_newer_file.txt. Move is useful for renam‐
ing files (as we have done here) or moving a file or folder.

Finally, you may want to remove or delete files you don’t need anymore. To do so
with cmd, you can use the del command. Try the following:

del my_new_file.txt

434 | Appendix C: Learning the Command Line

www.it-ebooks.info

http://www.it-ebooks.info/

Now, when you check your current files, you should no longer see my_new_file.txt.
Note that this will completely remove the file. You want to make sure you only do this
if you absolutely do not need the file. It’s also a great idea to make regular hard drive
backups in case of any issues.

Now that we can modify files, let’s take a look at how to execute files from cmd.

Executing Files
To execute files from your Windows cmd, you usually need to type the language name
and then the path to the file. For example, to execute a Python file, you’ll need to
type:

python my_file.py

This will execute the file my_file.py as long as it’s located in the same folder. You can
execute a .exe file simply by typing the full filename and path into your cmd and hit‐
ting Enter.

As you did when you installed Python, you’ll need to make sure
installation packages and the file paths for the installed executables
are sourced in your Path variable (for details, refer to “Setting Up
Python on Your Machine” on page 7). This variable keeps a list of
the executable strings for your cmd.

For more powerful command-line execution, we recommend learning Windows
PowerShell—a powerful scripting language used to write scripts and execute them via
a simple command line. Computerworld has a great introduction to PowerShell to get
started.

To run installed programs from the command line, you can use the start command.
Try the following:

start "" "http://google.com"

This should open up your default browser and navigate to Google’s home page. See
the start command documentation for more information.

Now that we know how to execute using the command line, let’s investigate how to
search for and find files and folders on our machine.

Searching with the Command Line
Let’s begin by downloading a corpus we can use. If you have Windows Vista or newer,
you should be able to execute PowerShell commands. Try loading PowerShell by typ‐
ing the following:

powershell

Learning the Command Line | 435

www.it-ebooks.info

http://bit.ly/powershell_intro
http://bit.ly/start_command
http://www.it-ebooks.info/

You should see a new prompt that looks similar to this:

Windows PowerShell
...
PS C:\Users\Katharine>

Now that we’re in PowerShell, let’s try downloading a file we want to use for searching
(note that this and the following command should be entered on a single line; the
commands are wrapped here to fit page constraints):

Invoke-WebRequest -OutFile C:\Downloads\text.zip
 http://corpus.byu.edu/glowbetext/samples/text.zip

If you don’t have the PowerShell version 3.0 or above, the command will throw an
error. If you receive an error, try the following command, which will work for older
versions of PowerShell:

(new-object System.Net.WebClient).DownloadFile(
'http://corpus.byu.edu/glowbetext/samples/text.zip','C:\Downloads\text.zip')

These commands use PowerShell to download a word corpus file to your computer.
Let’s create a new directory to unzip the files:

mkdir Downloads\text_examples

Now we are going to add a new function to PowerShell to extract our zipped file.
Type the following:

Add-Type -AssemblyName System.IO.Compression.FileSystem
function Unzip
{
 param([string]$zipfile, [string]$outpath)

 [System.IO.Compression.ZipFile]::ExtractToDirectory($zipfile, $outpath)
}

This function is now defined and we can use it to unzip files. Try unzipping the
downloaded content into the new folder:

Unzip Downloads\text.zip Downloads\text_examples

To exit PowerShell, simply type exit. Your prompt should return to the normal cmd
prompt. If you use dir Downloads\text_examples, you should have a list of text files
from the corpus download. Let’s use findstr to search within those files:

findstr "neat" Downloads\text_examples*.txt

You should see a bunch of text output fly by in your console. Those are the matching
lines of the text files that have the word neat in them.

Sometimes you want to search for a particular filename, not a string in a file. To do
that, you need to use the dir command, but with a filter:

dir -r -filter "*.txt"

436 | Appendix C: Learning the Command Line

www.it-ebooks.info

http://www.it-ebooks.info/

This should find all of your .txt files in folders contained within your home folder. If
you need to search within those files, you can use piping. A | character “pipes” your
output from the first command into the next command. We can use this to, say, find
all Python files with a particular function name in them, or find all CSV files contain‐
ing a particular country name. Let’s pipe our findstr output into our find command
to try it out:

findstr /s "snake" *.txt | find /i "snake" /c

This code searches for text files that contain the word snake and then uses find to
count the number of occurrences of the word snake in these files. As you can see,
learning more cmd commands and usage will help greatly in simplifying tasks like
searching for files, executing code, and managing your work as a data wrangler and
developer. This appendix has helped introduce you to some of these topics, and is a
good stepping stone to learn more.

More Resources
There are some great online resources for looking up cmd commands to read through
for learning how to use cmd for your daily programming and data wrangling needs.

If you’d like to learn more about PowerShell and how to use it to create powerful
scripts for your Windows servers and computers, take a look at some tutorials, like
Microsoft’s Getting Started with PowerShell 3.0. There is also an O’Reilly Windows
Powershell Cookbook to get you started on writing your first scripts.

Learning the Command Line | 437

www.it-ebooks.info

http://ss64.com/nt/
http://bit.ly/gs_with_powershell
http://shop.oreilly.com/product/0636920024132.do
http://shop.oreilly.com/product/0636920024132.do
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX D

Advanced Python Setup

Early in the book, we set up system Python. Why? Because it is quick and easy to use.
When you start using more complex libraries and tools, you will likely need a more
advanced setup. An advanced Python setup on your machine is helpful when trying
to organize projects. An advanced setup also helps if you need to run both Python 2.7
and Python 3+.

In this appendix, we walk you through setting up your Python
environment in Expert mode. Because there are a lot of dependen‐
cies involved, it is entirely possible some parts of these instructions
might not line up with your experience. To resolve issues, we sug‐
gest going to the Web to find, or ask, how to continue.

We’ll start by installing a couple of core tools, then install Python (2.7, but you could
install 3+ at this point). Lastly, we’ll install and set up some virtual environments,
which isolate projects so you can have different versions of a Python library for each
project.

The instructions in this appendix cover Mac, Windows, and Linux setups. As you
read through each step, carefully follow the instructions for your particular operating
system.

Step 1: Install GCC
The purpose of GCC (the GNU Compiler Collection) is to take code written in
Python and turn it into something your machine can understand—byte code.

On a Mac, GCC is included in Xcode and Command Line Tools. You will need to
download either one. In both cases, you will need an Apple ID for the download.

439

www.it-ebooks.info

https://developer.apple.com/xcode/
https://developer.apple.com/downloads/
http://bit.ly/create_appleid
http://www.it-ebooks.info/

Also, Xcode can take a while to download depending on your Internet connection
(for me it took 20 minutes), so plan to take a break. If you are concerned with time or
memory use, opt for Command Line Tools instead. Installing Xcode or Command
Line Tools will not take as long. Make sure Xcode or Command Line Tools is installed
before moving on to the installation of Homebrew.

If you are using Windows, Jeff Preshing has this helpful tutorial for installing GCC. If
you are using Linux, GCC is installed on most Debian-based systems, or you can
install it by simply running sudo apt-get install build-essential.

Step 2: (Mac Only) Install Homebrew
Homebrew manages packages on your Mac, which means you can type a command
and Homebrew will aid in the installation.

Make sure either Xcode or Command Line Tools is done installing
before you install Homebrew. Otherwise, you will have errors in
your Homebrew installation.

To install Homebrew, open Terminal, and enter this line (follow any prompts that
come up, including the one asking your permission to install Homebrew):

$ ruby -e "$(curl -fsSL https://raw.github.com/Homebrew/homebrew/go/install)"

Pay attention to the output. Homebrew recommends running brew doctor to test
and warn you of any issues with the installation. Depending on the state of your sys‐
tem, you might have various items to address. If you have no warnings returned, then
continue to the next step.

Step 3: (Mac Only) Tell Your System Where to Find
Homebrew
To use Homebrew, you need to tell your system where it’s located. To do this, you
want to add Homebrew to your .bashrc file or other shell you are using (i.e., if you
have a custom shell, you’ll need to add it there). The .bashrc file may not exist yet on
your system; if it does exist, it will be hidden in your home directory.

All files that have a . at the beginning of their names do not appear when you type ls
unless you explicitly request to see all of them. The purpose of this is twofold. First, if
the files are not visible you are less likely to delete or edit them inappropriately. Sec‐
ond, these file types are not used regularly, so hiding them gives the system a cleaner
appearance.

440 | Appendix D: Advanced Python Setup

www.it-ebooks.info

http://bit.ly/gcc_install_tutorial
http://www.it-ebooks.info/

Let’s see what our directory might look like if we show all the files by adding some
extra flags to ls. Make sure you’re in your home directory, and then enter the follow‐
ing command:

$ ls -ag

Your output will look something like this:

total 56
drwxr-xr-x+ 17 staff 578 Jun 22 00:08 .
drwxr-xr-x 5 admin 170 May 29 09:49 ..
-rw------- 1 staff 3 May 29 09:49 .CFUserTextEncoding
-rw-r--r--@ 1 staff 12292 May 29 09:44 .DS_Store
drwx------ 8 staff 272 Jun 10 00:45 .Trash
-rw------- 1 staff 389 Jun 22 00:07 .bash_history
drwx------ 4 staff 136 Jun 10 00:35 Applications
drwx------+ 5 staff 170 Jun 22 00:08 Desktop
drwx------+ 3 staff 102 May 29 09:49 Documents
drwx------+ 10 staff 340 Jun 11 23:47 Downloads
drwx------@ 43 staff 1462 Jun 10 00:29 Library
drwx------+ 3 staff 102 May 29 09:49 Movies
drwx------+ 3 staff 102 May 29 09:49 Music
drwx------+ 3 staff 102 May 29 09:49 Pictures
drwxr-xr-x+ 5 staff 170 May 29 09:49 Public

We do not have a .bashrc file, so we will have to create one.

If you do have a .bashrc file, you should back it up in case you have
any issues. Making a copy of your .bashrc is easiest on your com‐
mand line. Simply run the following command to copy .bashrc to a
new file called .bashrc_bkup:

$ cp .bashrc .bashrc_bkup

To create a .bashrc, first we need to make sure we have a .bash_profile file which is the
file that will call the .bashrc file. If we add a .bashrc file without a .bash_profile file, our
computer won’t know what to do with it.

Before starting, check if you have a .bash_profile file. If you do, it will be in the direc‐
tory list produced by is -ag. If you don’t, then you will need to create it.

If you have a .bash_profile file, you should back it up so that if you
have any issues you can restore to your original settings. Run the
following command to copy your .bash_profile file to a new file
called .bashrc_bkup:

$ cp ~/.bash_profile ~/.bash_profile_bkup

Then run this command to copy it to your desktop and rename it
at the same time:

$ cp ~/.bash_profile ~/Desktop/bash_profile

Advanced Python Setup | 441

www.it-ebooks.info

http://www.it-ebooks.info/

If you are working with an existing .bash_profile, launch your editor and open the
version you moved to your desktop. Add the following code to the bottom of the file.
The code just says, “if there is a .bashrc file, then use it”:

Get the aliases and functions
if [-f ~/.bashrc]; then
 . ~/.bashrc
fi

If you don’t already have a .bash_profile file, you’ll need to create a new file with these
contents in your editor. Save the file to your desktop as bash_profile, without the dot
in front.

Make sure you checked that .bash_profile and .bashrc didn’t already
exist in your home directory. If they did, make sure you followed
the instructions to create backups of the original files before con‐
tinuing. If you don’t do this, when you execute the following code
you could end up overwriting your original files, which could cause
problems.

Now go back to Terminal and run the following command to rename the file and
move it from the desktop to your home directory:

$ mv ~/Desktop/bash_profile .bash_profile

Now, if you run ls -al ~/, you will see that you have a .bash_profile file in your
home directory. If you run more .bash_profile, you will see the code calling
the .bashrc, which you put there.

Now that we have a .bash_profile file referring to the .bashrc, let’s edit the .bashrc file.
Start by opening your current .bashrc or a new file in your text editor. Add the follow‐
ing line to the bottom of your .bashrc file. This will add the location of Homebrew to
your $PATH variable in your settings. The new path will be prioritized over the old
$PATH:

export PATH=/usr/local/bin:/usr/local/sbin:$PATH

Now, save that file to your desktop with the name bashrc, without the dot.

Use a Command-Line Shortcut for Your Code Editor
While we are updating settings in our .bashrc, let’s also create a shortcut to launch our
code editor from the command line. This is not required, but it will make your life
easier when you are navigating file directories and want to open a file in your code
editor. Using your GUI to navigate the file structure will not be as efficient.

If you are using Atom, you already have a shortcut available when you install Atom
and the shell commands. Sublime also has commands available for OS X.

442 | Appendix D: Advanced Python Setup

www.it-ebooks.info

http://bit.ly/cl_open_atom
http://bit.ly/os_x_cl_sublime
http://www.it-ebooks.info/

If you are using another code editor, you can try typing the program name to see if it
launches, or the program name followed by --help to see if it has any command-line
help. We also recommend searching for “<your_program_name> command-line
tools” and see if there are any helpful results.

Back in Terminal, run the following command to rename the file and move it from
the desktop to your home directory:

$ mv ~/Desktop/bashrc .bashrc

At this point, if you run ls -al ~/, you will see that you have a .bashrc file and
a .bash_profile in your home directory. Let’s confirm it worked by opening a new win‐
dow in Terminal and checking out our $PATH variable. To check the variable, run the
following command:

$ echo $PATH

You should get an output something like this:

/usr/local/bin:/usr/local/sbin:/usr/bin:/bin:/usr/sbin:/sbin:/usr/local/bin

Whatever your output is, you will see that the variable information (/usr/local/
bin:/usr/local/sbin) added to our .bashrc now prepends the returned value.

If you do not see the new value in the variable, make sure you opened a new window.
Settings changes do not load in your current Terminal window, unless you explicitly
source the file into your current terminal (see the bash source command for more
information).

Step 4: Install Python 2.7
To install Python 2.7 on a Mac, run the following command:

$ brew install python

If you would like to push forward with Python 3+, you can install that instead. To
install Python 3+ on a Mac, run:

$ brew install python3

For Windows, you will need to follow the instructions in Chapter 1 to properly install
from the Windows installer package. For Linux, you likely already have Python
installed. It’s a good idea to install some extra Python tools in Linux by installing
some Python developer packages.

After the process is complete, you will want to test that it worked properly.

Launch your Python interpreter in Terminal:

$ python

Advanced Python Setup | 443

www.it-ebooks.info

http://ss64.com/bash/source.html
http://bit.ly/install_python_dev_pkg
http://www.it-ebooks.info/

Then, run the following:

import sys
import pprint
pprint.pprint(sys.path)

Mac output looks similar to this:

>>> pprint.pprint(sys.path)
['',
 '/usr/local/lib/python2.7/site-packages/setuptools-4.0.1-py2.7.egg',
 '/usr/local/lib/python2.7/site-packages/pip-1.5.6-py2.7.egg',
 '/usr/local/Cellar/python/2.7.7_1/Frameworks/Python.framework/Versions/
 2.7/lib/python27.zip',
 '/usr/local/Cellar/python/2.7.7_1/Frameworks/Python.framework/Versions/
 2.7/lib/python2.7',
 '/Library/Python/2.7/site-packages',
 '/usr/local/lib/python2.7/site-packages']

If you are using a Mac, the output you received should have a bunch of file paths that
start with /usr/local/Cellar/. If you do not see this, you may not have reloaded your
settings in your Terminal window. Close your window, and then open a new one and
try again. If this did not solve any issues you may have had during this process, return
to the beginning of the setup and retrace your steps.

Debugging installation errors is a learning experience. If you have errors not docu‐
mented in this section, open up your favorite search engine in your browser and
search for the error. You are probably not the first one to experience the issue.

If you successfully completed this section, you can move on to the next step.

Step 5: Install virtualenv (Windows, Mac, Linux)
We’ve set up a second instance of Python, but now we want to set up a way of creating
individual Python environments. This is where virtualenv helps, by isolating
projects and dependencies from one another. If we have multiple projects, we can
make sure individual requirements do not conflict.

To get started, we need Setuptools. When we installed Python, Setuptools came with
it. Part of Setuptools is a command-line tool called pip, that we are going to use to
install Python packages.

To install virtualenv, you will want to run the following command on your command
line:

$ pip install virtualenv

After you run that command, part of the output should be the following: Successfully
installed virtualenv. If you got that, then everything went well. If not, then you have
another issue that you need to account for, so search around online for help.

444 | Appendix D: Advanced Python Setup

www.it-ebooks.info

http://pythonhosted.org//setuptools/
http://virtualenv.readthedocs.org/en/latest/
http://www.it-ebooks.info/

Step 6: Set Up a New Directory
Before we continue, let’s create a directory in which to keep our project-related con‐
tent. The exact location is a personal preference. Most people create a folder in their
user home directory, for easy access and backups. You can put the directory anywhere
you like that is both useful and memorable. On a Mac, to make a Projects folder in
your home directory, run the following command in Terminal:

$ mkdir ~/Projects/

or for Windows:

> mkdir C:\Users_your_name_\Projects

Then we are going to create a folder inside that folder to store the data-wrangling
specific-code we will write. On a Mac, you can do that by running this command:

$ mkdir ~/Projects/data_wrangling
$ mkdir ~/Projects/data_wrangling/code

or for Windows:

> mkdir C:\Users_your_name_\Projects\data_wrangling
> mkdir C:\Users_your_name_\Projects\data_wrangling\code

Lastly, add a hidden folder in your home directory to use for virtualenv environ‐
ments. Use this command on a Mac:

$ mkdir ~/.envs

or for Windows:

> mkdir C:\Users_your_name_\Envs

If you’d like to hide your folder on Windows, you can do so by editing the attributes
via the command line:

> attrib +s +h C:\Users_your_name_\Envs

To unhide it, simply remove the attributes:

> attrib -s -h C:\Users_your_name_\Envs

At this point, if we look at the contents of our Projects folder, we should have two
empty subfolders called code and envs.

Step 7: Install virtualenvwrapper
virtualenv is a great tool, but virtualenvwrapper makes virtualenv easier to
access and use. While it has many features not mentioned in this appendix, the most
powerful feature is one of the simplest.

It takes a command like this:

Advanced Python Setup | 445

www.it-ebooks.info

http://virtualenvwrapper.readthedocs.org/en/latest/
http://bit.ly/virtualenvwrapper_features
http://www.it-ebooks.info/

source $PATH_TO_ENVS/example/bin/activate

And turns it into this:

workon example

Installing virtualenvwrapper (Mac and Linux)
To install virtualenvwrapper on Mac and Linux, run the following:

$ pip install virtualenvwrapper

Check the second-to-last line of the output to make sure everything installed cor‐
rectly. For me that line says, Successfully installed virtualenvwrapper virtualenv-clone
stevedore.

Updating your .bashrc
You also need to add some settings to your .bashrc. We are going to copy the file, edit
it, then move it back to where it was.

First, make a backup of your .bashrc. If you already have one of these, you can skip
this step. If you started with a new file, you will be creating your first backup of
your .bashrc. To do so, type this command:

$ cp ~/.bashrc ~/.bashrc_bkup

I store my settings files on GitHub, so I always have a backup avail‐
able. This is so if I make a mistake or my computer dies, I can
always recover them. Make sure your home folder doesn’t get clut‐
tered with 20 backups as you make adjustments over time to this
file. You will rarely edit the .baschrc file, but when you do it is the
kind of file that you want to back up before editing.

Open your .bashrc file using your code editor and add these three lines to the end of
the file. If you did not use the same location for your Projects folder, then you will
want to adjust the file paths accordingly:

export WORKON_HOME=$HOME/.envs
export PROJECT_HOME=$HOME/Projects/
source /usr/local/bin/virtualenvwrapper.sh

Defines the WORKON_HOME variable. This is where your Python environments are
stored. This should align with the environment folder you created earlier.

Defines the PROJECT_HOME variable. This is where you store your code. This
should align with the Projects (or for linux projects) folder you created earlier.

Initiates virtualenvwrapper, which makes virtualenv easier to use.

446 | Appendix D: Advanced Python Setup

www.it-ebooks.info

https://github.com/jackiekazil/dotfiles
http://www.it-ebooks.info/

When you’re done, save the file and open a new Terminal window where you will
load the new settings. Now you will have an easy-to-use set of commands to work
with virtual environments.

Installing virtualenvwrapper-win (Windows)
For Windows, there are some extra optional steps to make your life easier. First, you
should install the Windows version of virtualenvwrapper. You can do so by
running:

>pip install virtualenvwrapper-win

You should also add a WORKON_HOME environment variable. By default, virtualenv
wrapper will expect you to have a folder named Envs in your User folder. If you’d
rather set up your own folder for your virtual environments, do that and then add the
WORKON_HOME environment variable set to the proper file path. If you haven’t set up
environment variables before and want a quick how-to, there’s a nice walkthrough on
Stack Overflow.

In order to work with more than one version of Python in Win‐
dows, it’s also a good idea to install pywin; this allows you to easily
switch between Python versions.

Testing Your Virtual Environment (Windows, Mac, Linux)
Before we wrap up this section, let’s run a few tests to make sure everything is work‐
ing. In a new terminal window, create a new virtual environment called test:

mkvirtualenv test

Your output should look something like this:

New python executable in test/bin/python2.7
Not overwriting existing python script test/bin/python (you must use
 test/bin/python2.7)
Installing setuptools, pip...done.

Advanced Python Setup | 447

www.it-ebooks.info

https://pypi.python.org/pypi/virtualenvwrapper-win
http://bit.ly/env_variables
http://bit.ly/env_variables
https://github.com/davidmarble/pywin
http://www.it-ebooks.info/

If you wanted to create an environment with Python 3+ instead of
Python 2.7, then you would define the python variable and point it
to Python 3. First, identify where your instance of Python 3 is
located:

which python3

Your output should look something like this:
/usr/local/bin/python3

Now, use that in your mkvirtualenv command to define a Python
3+ environment:

mkvirtualenv test --python=/usr/local/bin/python3

You should see “(test)” prepended to the being of your terminal prompt. That means
the environment is currently activated.

If you got -bash: mkvirtualenv: command not found as your
output instead, then your terminal is not recognizing virtualenv
wrapper. First, check to make sure you opened a new Terminal or
cmd window before running this code, which ensures the new set‐
tings are applied. If that’s not the issue, then go through the setup
and confirm you followed all the steps.

If you were able to successfully create a virtual environment, then you are done with
your setup!

Let’s deactivate our virtual environment and destroy it, as it was only a test. Run the
following commands to remove the test environment:

deactivate
rmvirtualenv test

By this point, you’ve set up a second Python instance on your machine. You also have
an environment where you can create isolated Python environments to protect one
project from another. Now we are going to run through some exercises to make you
familiar with your shiny new Python environment.

Learning About Our New Environment (Windows, Mac,
Linux)
The examples shown here are for a Mac, but the process is the same on Windows and
Linux. In this section, we are going to learn a little about how to use our setup and
make sure all the components work together.

448 | Appendix D: Advanced Python Setup

www.it-ebooks.info

http://www.it-ebooks.info/

Let’s begin by creating a new environment called testprojects. We will activate and use
this any time we need a quick environment to exercise a test or something else. To
create it, run this command:

$ mkvirtualenv testprojects

After you create the environment, you should see that your Terminal prompt is now
prepended with the name of the environment. For me, that looks like this:

(testprojects)Jacquelines-MacBook-Pro:~ jacquelinekazil$

Let’s install a Python library into our environment. The first library we will install is
called ipython. In your active environment, run the following command:

(testprojects) $ pip install ipython

If this command is successful, then the last couple of lines of your output should look
like this:

Installing collected packages: ipython, gnureadline
Successfully installed ipython gnureadline
Cleaning up...

Now, if you type pip freeze into your Terminal, you will see the libraries in your
current environment along with the version number of each installation. The output
should look like this:

gnureadline==6.3.3
ipython==2.1.0
wsgiref==0.1.2

This output tells us that, in the testprojects environment, we have three libraries
installed: gnureadline, ipython, and wsgiref. ipython is what we just installed.
gnureadline was installed when we installed ipython, because it is a dependency
library. (This saves you from having to install dependent packages directly. Nice,
right?) The third library is wsgiref. It was there by default, but isn’t a requirement.

So, we’ve installed a library called ipython, but what can we do with it? IPython is an
easy-to-use alternative to the default Python interpreter (you can read even more
about IPython in Appendix F). To launch IPython, simply type ipython.

You should see a prompt similar to this:

IPython 3.1.0 -- An enhanced Interactive Python.
? -> Introduction and overview of IPython's features.
%quickref -> Quick reference.
help -> Python's own help system.
object? -> Details about 'object', use 'object??' for extra details.

In [1]:

To test it out, type the following:

Advanced Python Setup | 449

www.it-ebooks.info

http://www.it-ebooks.info/

In [1]: import sys

In [2]: import pprint

In [3]: pprint.pprint(sys.path)

You should have the same output as earlier when we confirmed that our environment
was working. sys and pprint are what are called standard library modules, which
come prepackaged with Python.

Let’s exit out of IPython. There are two ways to do this. You can either press Ctrl+D,
then type y for yes when prompted, or just type quit(). This works just like the
default Python shell.

Once you have exited, you will be back on the command line. Now we have an envi‐
ronment called testprojects with three libraries installed. But what if we want to have
another environment, because we are going to work on another project? First, type
the following to deactivate the current environment:

$ deactivate

Then create a new one called sandbox:

$ mkvirtualenv sandbox

After you do this, you’ll be in your new environment. If you type pip freeze, you
will see that you do not have IPython installed in this environment. This is because
this is a fresh environment, which is completely separate from the testprojects envi‐
ronment. If we install IPython in this environment, it will install a second instance on
our computer. This ensures anything we do in one environment doesn’t affect the
others.

Why is this important? As you work on new projects, you will likely want different
libraries and different versions of libraries installed. We recommend setting up one
virtual environment for this book, but if you start on a new project, you’ll want to
start a new virtual environment. As you can see, it’s easy to switch between environ‐
ments as you change projects.

You may sometimes come across a repository with all of the requirements stored in a
file called requirements.txt. The library’s authors used virtual environments and pip
freeze to save a list so users can install the library and dependencies. To install from
a requirements file, you need to run pip install -r requirements.txt.

We know how to create an environment and deactivate an environment, but we don’t
know how to activate one that already exists. To activate our sample environment
called sandbox, type the following command (if you are already in it, you may have to
deactivate first to see the difference):

$ workon sandbox

450 | Appendix D: Advanced Python Setup

www.it-ebooks.info

http://www.it-ebooks.info/

Lastly, how do you destroy an environment? First, make sure you are not in the envi‐
ronment you want to remove. If you just typed in workon sandbox then you should
be in the sandbox environment. To destroy it, you will want to first deactivate, then
remove it:

$ deactivate
$ rmvirtualenv sandbox

Now, the only environment you should have is testprojects.

Advanced Setup Review
Your computer is now set up to run an advanced Python library. You should feel
more comfortable interacting with your command line and working with installing
packages. If you haven’t already, we also recommend you take a look at Appendix C to
learn more about working with the command line.

Table D-1 lists the commands you will use most often with virtual environments.

Table D-1. Commands to review

Command Action

mkvirtualenv Creates an environment

rmvirtualenv Destroys an environment

workon Activates an environment

deactivate Deactivates the environment that is currently active

pip install Installs in the active environmenta

pip uninstall Uninstalls in the active environmentb

pip freeze Returns a list of installed libraries in the active environment

a If no environment is active, the library will be installed on the secondary copy of Python on your system, which was installed
using Homebrew. Your system Python should not be affected.
b See previous footnote.

Advanced Python Setup | 451

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX E

Python Gotchas

Python, like any other language you learn, has its quirks and idiosyncracies. Some of
them are shared among scripting languages, so they may not seem surprising if you
have scripting experience. Other quirks are unique to Python. We’ve assembled a list
of some of them, but by no means all of them, so you can familiarize yourself. We
hope this appendix serves as an aid for debugging and also gives you a bit of insight
on why Python does things the way it does.

Hail the Whitespace
As you have probably already noticed, Python uses whitespace as an integral part of
code structure. Whitespace is used to indent functions, methods, and classes; to oper‐
ate if-else statements; and to create continuation lines. In Python, whitespace is a spe‐
cial operator and helps turn Python code into executable code.

There are a few best practices for whitespace in your Python files:

• Don’t use tabs. Use spaces.
• Use four spaces for each indentation block.
• Choose a good indentation for hanging indents (it can align with a delimiter, an

extra indentation, or a single indentation, but should be chosen based on what is
most readable and usable; see PEP-8).

PEP-8 (or Python Enhancement Proposals #8) is a Python style
guide outlining good practices for indentation and advice on how
to name variables, continue lines, and format your code so it is
readable, easy to use, and easy to share.

453

www.it-ebooks.info

http://bit.ly/pep-8_indentation
http://www.it-ebooks.info/

1 For some further reading on how the GIL performs with some visualization, check out “A Zoomable Interac‐
tive Python Thread Visualization” by David Beazley.

2 For some great reading on what these packages do, check out Jeff Knupp’s writeup on how to go about allevi‐
ating GIL issues.

If your code is improperly indented and Python cannot parse your file, you’ll get an
IndentationError. The error message will show you what line you have improperly
indented. It’s also fairly easy to get a Python linter set up with whatever text editor is
your favorite, to automatically check your code as you are working. For example, a
nice PEP-8 linter is available for Atom.

The Dreaded GIL
The Global Interpreter Lock (GIL) is a mechanism used by the Python interpreter to
execute code using only one thread at a time. This means that when you are running
your Python script, even on a multiprocessing machine, your code will execute line‐
arly. This design decision was made so that Python could run quickly using C code
but still be thread-safe.

The constraint the GIL puts on Python means with the standard interpreter, Python
is never truly parallelized. This has some disadvantages for high-I/O applications or
applications relying heavily on multiprocessing.1 There are some Python libraries to
circumvent these issues by using multiprocessing or asynchronous services,2 but they
don’t change the fact that the GIL still exists.

That said, there are plenty of Python core developers aware of the issues presented by
the GIL, as well as its benefits. There are often good workarounds available for cir‐
cumstances where the GIL is a pain point, and depending on your needs, there are
alternative interpreters available that are written in languages other than C. If you
find the GIL is becoming a problem for your code, it’s likely that you can either rear‐
chitect your code or utilize a different code base (e.g., Node.js) to fulfill your needs.

= Versus == Versus is, and When to Just Copy
In Python, there are some serious distinctions between seemingly similar functions.
We know some of these already, but let’s review with some code and output (using
IPython):

In [1]: a = 1

In [2]: 1 == 1
Out[2]: True

In [3]: 1 is 1
Out[3]: True

454 | Appendix E: Python Gotchas

www.it-ebooks.info

http://www.dabeaz.com/GIL/gilvis/
http://www.dabeaz.com/GIL/gilvis/
http://bit.ly/python_gil_problem
https://atom.io/packages/linter-python-pep8
https://atom.io/packages/linter-python-pep8
http://www.it-ebooks.info/

In [4]: a is 1
Out[4]: True

In [5]: b = []

In [6]: [] == []
Out[6]: True

In [7]: [] is []
Out[7]: False

In [8]: b is []
Out[8]: False

Sets variable a equal to 1

Tests if 1 is equal to 1

Tests if 1 is the same object as 1

Tests if a is the same object as 1

If you execute these lines in IPython (so you can see the output, similar to what we’ve
shown here) you will notice some interesting and possibly unexpected results. With
an integer, we see that it’s easy to determine equivalency in a lot of ways. With the list
object, however, we find that is acts differently from the other comparison operators.
In Python, memory management operates differently than in some other languages.
There’s a great writeup with visualizations on Sreejith Kesavan’s blog about how
Python manages objects in memory.

To see this from another perspective, let’s take a look at where the object’s memory is
held:

In [9]: a = 1

In [10]: id(a)
Out[10]: 14119256

In [11]: b = a

In [12]: id(b)
Out[12]: 14119256

In [13]: a = 2

In [14]: id(a)
Out[14]: 14119232

In [15]: c = []

Python Gotchas | 455

www.it-ebooks.info

http://foobarnbaz.com/2012/07/08/understanding-python-variables/
http://www.it-ebooks.info/

In [16]: id(c)
Out[16]: 140491313323544

In [17]: b = c

In [18]: id(b)
Out[18]: 140491313323544

In [19]: c.append(45)

In [20]: id(c)
Out[20]: 140491313323544

Sets b equal to a.

When we test the id here, we find that both b and a hold the same place in mem‐
ory—that is, they are the same object in memory.

When we test the id here, we find a has a new place in memory. That place now
holds the value of 2.

With a list, we can see that we have the same id when we assign the list equal to
the same object.

When we change the list, we find we do not change the place in memory. Python
lists behave differently than integers and strings in this way.

What we want to take away from this is not a deep understanding of memory alloca‐
tion in Python, but that we might not always think we are assigning what we are
assigning. When dealing with lists and dictionaries, we want to know and understand
that if we set them equal to a new variable, that new variable and the old variable are
still the same object in memory. If we alter one, we alter the other. If we want to only
alter one or the other, or if we need to create a new object as a copy of an object, we
need to use the copy method.

Let’s take a look with one final example to explain copy versus assignment:

In [21]: a = {}

In [22]: id(a)
Out[22]: 140491293143120

In [23]: b = a

In [24]: id(b)
Out[24]: 140491293143120

In [25]: a['test'] = 1

456 | Appendix E: Python Gotchas

www.it-ebooks.info

http://www.it-ebooks.info/

In [26]: b
Out[26]: {'test': 1}

In [27]: c = b.copy()

In [28]: id(c)
Out[28]: 140491293140144

In [29]: c['test_2'] = 2

In [30]: c
Out[30]: {'test': 1, 'test_2': 2}

In [31]: b
Out[31]: {'test': 1}

With this line, we see that when we modify a we also modify b, as they are stored
in the same place in memory.

Using copy we create a new variable, c, which is a copy of the first dictionary.

With this line, we see that copy created a new object. It has a new id.

After we modify c, we see it now holds two keys and values.

Even after c is modified, we see that b remains the same.

With this last example, it should be obvious that if you actually want a copy of a dic‐
tionary or list, you will need to use copy. If you want the same object, then you can
use =. Likewise, if you want to test whether two objects “are equal” you can use ==, but
if you want to see whether these are the same object, use is.

Default Function Arguments
Sometimes you will want to pass default variables into your Python functions and
methods. To do so, you want to fully understand when and how Python calls these
default methods. Let’s take a look:

def add_one(default_list=[]):
 default_list.append(1)
 return default_list

Now let’s investigate with IPython:

In [2]: add_one()
Out [2]: [1]

Python Gotchas | 457

www.it-ebooks.info

http://www.it-ebooks.info/

In [3]: add_one()
Out [3]: [1, 1]

You might have expected that each function call would return a new list with only one
item, 1. Instead, both calls modified the same list object. What is happening is that
the default argument is declared when the script is first interpreted. If you want a new
list every time, you can rewrite the function like so:

def add_one(default_list=None):
 if default_list is None:
 default_list = []
 default_list.append(1)
 return default_list

Now our code behaves as we would expect:

In [6]: add_one()
Out [6]: [1]

In [7]: add_one()
Out [7]: [1]

In [8]: add_one(default_list=[3])
Out [8]: [3, 1]

Now that you understand a bit about memory management and default variables, you
can use your knowledge to determine when to test and set variables in your functions
and executable code. With a deeper understanding of how and when Python defines
objects, we can ensure these types of “gotchas” don’t end up adding bugs into our
code.

Python Scope and Built-Ins: The Importance of Variable
Names
In Python, scope operates slightly differently than you might expect. If you define a
variable in the scope of a function, that variable is not known outside of the function.
Let’s take a look:

In [10]: def foo():
 : x = "test"

In [11]: x
.---
NameError Traceback (most recent call last)
<ipython-input-94-009520053b00> in <module>()
----> 1 x
NameError: name 'x' is not defined

However, if we have previously defined x, we will get our old definition:

458 | Appendix E: Python Gotchas

www.it-ebooks.info

http://www.it-ebooks.info/

In [12]: x = 1

In [13]: foo()

In [14]: x
Out [14]: 1

This relates to built-in functions and methods. If you rewrite them by accident, then
you can’t use them from that point in time onward. So, if you rewrite the special
words list or date, the built-in functions with those names will not function nor‐
mally throughout the rest of your code (or from that point in time forward):

In [17]: from datetime import date

In [19]: date(2015, 2, 5)
Out[19]: datetime.date(2015, 2, 5)

In [20]: date = 'my date obj'

In [21]: date(2015, 2, 5)
.---
TypeError Traceback (most recent call last)
<ipython-input-105-7f129d4341d0> in <module>()
----> 1 date(2015, 2, 5)

TypeError: 'str' object is not callable

As you can see, using variables that share names (or share names with anything other
the standard Python namespace or any other libraries you are using) can be a debug‐
ging nightmare. If you use specific names in your code and are aware of the variable
or module names, you won’t end up debugging namespace issues for hours.

Defining Objects Versus Modifying Objects
Defining a new object operates differently compared to modifying an old object in
Python. Let’s say you have a function that adds one to an integer:

def add_one_int():
 x += 1
 return x

If you try to run that function, you should receive an error that reads UnboundLoca
lError: local variable 'x' referenced before assignment. However, if you
define x in your function, you’ll see a different result:

def add_one_int():
 x = 0
 x += 1
 return x

Python Gotchas | 459

www.it-ebooks.info

http://www.it-ebooks.info/

This code is a bit convoluted (why can’t we just return 1?), but the takeaway is we
must declare variables before we modify them, even when using a modification that
looks like an assignment (+=). It’s especially important to keep this in mind when
working with objects like lists and dictionaries (where we know modifying an object
can have repercussions on other objects held in the same memory).

The important thing to remember is to always be clear and concise about when you
intend to modify an object and when you want to create or return a new object. How
you name variables and how you write and implement functions is key to writing
scripts that are clear and behave predictably.

Changing Immutable Objects
When you want to modify or change immutable objects, you’ll need to create new
objects. Python will not allow you to modify immutable objects, like tuples. As you
learned when we discussed Python memory management, some objects hold the
same space. Immutable objects cannot be modified; they are always reassigned. Let’s
take a look:

In [1]: my_tuple = (1,)

In [2]: new_tuple = my_tuple

In [3]: my_tuple
Out[3]: (1,)

In [4]: new_tuple
Out[4]: (1,)

In [5]: my_tuple += (4, 5)

In [6]: new_tuple
Out[6]: (1,)

In [7]: my_tuple
Out[7]: (1, 4, 5)

What we can see here is that we tried to modify the original tuple using the += opera‐
tor, and we were able to successfully do so. What we received, however, was a new
object containing the original tuple plus the tuple we appended (4, 5). We did not
end up changing the new_tuple variable, as what we did was assign a new place in
memory to the new object. If you were to look at the memory ID before and after the
+= after, you would see it changed.

The main thing to remember about immutable objects is that when modified they do
not hold the same place in memory, and if you modify them, you are actually creating
completely new objects. This is especially important to remember if you are using

460 | Appendix E: Python Gotchas

www.it-ebooks.info

http://www.it-ebooks.info/

methods or attributes of a class with immutable objects, as you want to ensure you
understand when you are modifying them and when you are creating new immutable
objects.

Type Checking
Python allows for easy type casting, meaning you can change strings to integers or
lists to tuples, and so on. But this dynamic typing means issues can arise, especially in
large code bases or when you are using new libraries. Some common issues are that a
particular function, class, or method expects to see a certain type of object, and you
mistakenly pass it the wrong type.

This becomes increasingly problematic as your code becomes more advanced and
complex. As your code is more abstracted, you’ll be holding all of your objects in
variables. If a function or method returns an unexpected type (say, None instead of a
list), that object may be passed along to another function—possibly one that doesn’t
accept None and then throws an error. Maybe that error is even caught, but the code
assumes the exception was caused because of another problem and continues. It can
very quickly get out of hand and become quite a mess to debug.

The best advice for handling these issues is to write very concise and clear code. You
should ensure your functions always return what is expected by actively testing your
code (to ensure there are no bugs) and keeping an eye on your scripts and any odd
behavior. You should also add logging to help determine what your objects contain.
In addition, being very clear about what exceptions you catch and not just catching
all exceptions will help make these issues easier to find and fix.

Finally, at some point Python will implement PEP-484, which covers type hints,
allowing you to check passed variables and your code to self-police these issues. This
will likely not be incorporated until a future Python 3 release, but it’s good to know
it’s in the works and you can expect to see a bit more structure around type checking
in the future.

Catching Multiple Exceptions
As your code advances, you might want to catch more than one exception with the
same line. For example, you might want to catch a TypeError along with an
AttributeError. This might be the case if you believe you are passing a dictionary
and you are actually passing a list. It might have some of the same attributes, but not
all. If you need to catch more than one type of error on a line, you must write the
exceptions in a tuple. Let’s take a look:

Python Gotchas | 461

www.it-ebooks.info

https://www.python.org/dev/peps/pep-0484/
http://www.it-ebooks.info/

my_dict = {'foo': {}, 'bar': None, 'baz': []}

for k, v in my_dict.items():
 try:
 v.items()
 except (TypeError, AttributeError) as e:
 print "We had an issue!"
 print e

You should see the following output (possibly in a different order):

We had an issue!
'list' object has no attribute 'items'
We had an issue!
'NoneType' object has no attribute 'items'

Our exception successfully caught both errors and executed the exception block. As
you can see, being aware of the types of errors you might need to catch and under‐
standing the syntax (to put them in a tuple) is essential to your code. If you were to
simply list them (in a list or just separated by commas), your code would not function
properly and you would not be catching both exceptions.

The Power of Debugging
As you become a more advanced developer and data wrangler, you will come across
many more issues and errors to debug. We wish we could tell you it gets easier, but it’s
likely your debugging will become a bit more intense and rigorous before it becomes
easier. This is because you will be working with more advanced code and libraries,
and tackling more difficult problems.

That said, you have many skills and tools at your disposal to help you get unstuck.
You can execute code in IPython to get more feedback during development. You can
add logging to your scripts to better understand what is happening. You can have
your web scrapers take screenshots and save them to files if you are having issues
parsing a page. You can share your code with others in an IPython notebook or on
many helpful sites to get feedback.

There are also some great tools for debugging with Python, including pdb, which
allows you to step through your code (or other code in the module) and see exactly
what each object holds immediately before and after any errors. There’s a great, quick
introduction to pdb on YouTube, showing some ways to use pdb in your code.

Additionally, you should be reading and writing both documentation and tests. We’ve
covered some basics in this book, but we highly recommend you use this as a starting
point and investigate both documentation and testing further. Ned Batchelder’s recent
PyCon talk on getting started with testing is a great place to begin. Jacob Kaplan-
Moss also gave a great talk on getting started with documentation at PyCon 2011. By
reading and writing documentation and writing and executing tests, you can make

462 | Appendix E: Python Gotchas

www.it-ebooks.info

https://docs.python.org/2/library/pdb.html
http://bit.ly/pdb_intro
http://bit.ly/pdb_intro
http://bit.ly/pycon2014_batchelder
http://bit.ly/pycon2014_batchelder
http://bit.ly/writing_great_docs
http://bit.ly/writing_great_docs
http://www.it-ebooks.info/

sure you haven’t introduced errors into your code through misinformation, or missed
them by not running tests.

We hope this book is a good first introduction to these concepts, but we encourage
you to continue your reading and development by seeking out more Python learning
and continuing to excel as a Python developer.

Python Gotchas | 463

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX F

IPython Hints

Although your Python shell is useful, it’s lacking quite a lot of magic you can discover
by using IPython. IPython is an enhanced Python shell that offers you some easy-to-
use shortcuts and extra power when working with Python in a shell environment. It
was originally developed by scientists and students who wanted an easier shell for
their Python use. It has since become the de facto standard for learning and interact‐
ing with Python via an interpreter.

Why Use IPython?
IPython gives you quite a lot of functionality lacking in the standard Python shell.
The benefits of installing and using IPython as your shell are numerous. Its features
include:

• Easy-to-read documentation hooks
• Autocompletion and magic commands for library, class, and object exploration
• Inline image and chart generation
• Helpful tools to view history, create files, debug your script, reload your script,

and more
• Built-in shell command usage
• Auto-imports on startup

It’s also one of the core components of Jupyter, a shared notebook server allowing for
rapid-cycle data exploration in a browser. We covered using Jupyter for code sharing
and presentation in Chapter 10.

465

www.it-ebooks.info

http://ipython.org/
http://bit.ly/ipython_nb_history
https://jupyter.org/
http://www.it-ebooks.info/

Getting Started with IPython
IPython is easy to install with pip:

pip install ipython

If you are using more than one virtual environment, you might want to install IPy‐
thon globally or within each virtual environment. To begin using IPython, simply
type ipython in your terminal window. You should see a prompt similar to this:

$ ipython
Python 2.7.6 (default, Mar 22 2014, 22:59:56)
Type "copyright", "credits" or "license" for more information.

IPython 1.2.1 -- An enhanced Interactive Python.
? -> Introduction and overview of IPython's features.
%quickref -> Quick reference.
help -> Python's own help system.
object? -> Details about 'object', use 'object??' for extra details.

In [1]:

You can now type Python commands as you would in a normal Python shell. For
example:

In [1]: 1 + 1
Out[1]: 2

In [2]: from datetime import datetime

In [3]: datetime.now()
Out[3]: datetime.datetime(2015, 9, 13, 11, 47, 49, 191842)

When you need to exit the shell, you can type quit(), exit(), or Ctrl-D on Win‐
dows/Linux or Cmd-D on Mac.

Magic Functions
IPython has numerous so-called magic functions to help you as you explore and pro‐
gram. Here are some of the most useful ones, especially for beginning developers.

To easily see everything you have imported and all active objects, you can type %whos
or %who. Let’s take a look at their usage:

In [1]: foo = 1 + 4

In [2]: bar = [1, 2, 4, 6]

In [3]: from datetime import datetime

In [4]: baz = datetime.now()

466 | Appendix F: IPython Hints

www.it-ebooks.info

http://www.it-ebooks.info/

In [5]: %who
bar baz datetime foo

In [6]: %whos
Variable Type Data/Info

bar list n=4
baz datetime 2015-09-13 11:53:29.282405
datetime type <type 'datetime.datetime'>
foo int 5

This can be incredibly helpful if you have forgotten a variable name or want to see
what you have stored in your variables in one concise list.

Another useful tool is the ability to quickly look up documentation related to libra‐
ries, classes, or objects. If you type a ? at the end of the name of the method, class,
library, or attribute, IPython will attempt to retrieve any related documentation and
display it inline. For example:

In [7]: datetime.today?
Type: builtin_function_or_method
String Form:<built-in method today of type object at 0x7f95674e0a00>
Docstring: Current date or datetime:
 same as self.__class__.fromtimestamp(time.time()).

There are tons of IPython extensions and functions similar to these that are tremen‐
dously useful for development, particularly as you grow as a developer and encounter
more complicated issues. Table F-1 lists some of the most useful ones, but there are
also some great presentations and conference talks and interactive examples available
online, as well as the library’s well-written documentation.

All IPython extensions must be loaded using %load_ext exten
sion_name at the beginning of your IPython session. If you’d like to
install extra extensions, there’s a great list of available extension and
their uses on GitHub.

Table F-1. Useful IPython extensions and functions

Command Description Purpose Documentation

%autoreload Extension allowing
you to reload all
imported scripts
with one call

Great for active
development, when you
are changing a script in
your editor and debugging
it in your IPython shell

http://ipython.org/ipython-doc/dev/config/extensio
ns/autoreload.html

IPython Hints | 467

www.it-ebooks.info

http://ipython.org/presentation.html
http://bit.ly/ipynb_docs
http://ipython.org/documentation.html
http://bit.ly/ipython_extensions
http://ipython.org/ipython-doc/dev/config/extensions/autoreload.html
http://ipython.org/ipython-doc/dev/config/extensions/autoreload.html
http://www.it-ebooks.info/

Command Description Purpose Documentation

%store Extension allowing
you to store saved
variables for use in a
later session

Best for use if you need to
save some variables you
will always need or if you
are interrupted and need to
save your current work for
later use

http://ipython.org/ipython-doc/dev/config/extensio
ns/storemagic.html

%history Prints your session
history

Shows an output of what
you’ve already run

https://ipython.org/ipython-doc/dev/interactive/ma
gics.html#magic-history

%pdb Debugging module
for interactive
debugging with
longer calls

Powerful debugging
library, especially useful
when importing longer
scripts or modules

https://ipython.org/ipython-doc/dev/interactive/ma
gics.html#magic-pdb

%pylab Imports numpy and
matplotlib to
work interactively in
your session

Allows you to use statistics
and charting functionality
within your IPython shell

https://ipython.org/ipython-doc/dev/interactive/ma
gics.html#magic-pylab

%save Saves your session
history to an output
file

An easy way to start
writing a script if you’ve
spent a long time
debugging

https://ipython.org/ipython-doc/dev/interactive/ma
gics.html#magic-save

%timeit Times the execution
of one or more lines
of code

Handy for performance-
tuning your Python scripts
and functions

https://ipython.org/ipython-doc/dev/interactive/ma
gics.html#magic-timeit

There are many more magic commands available. Their usefulness will depend on
what you use IPython for in your development, but employing them as you grow as a
developer will likely shed light on other tasks IPython can simplify for you.

Final Thoughts: A Simpler Terminal
Whether you use IPython only in a notebook or in your active terminal development,
we believe it will help you write and understand Python and grow as a developer.
Much of your early development will be exploring how Python works and what errors
and exceptions you encounter along the way. IPython is great for these lessons, as you
can try again on the next input line. We hope IPython will keep you learning and
writing Python for many years to come.

468 | Appendix F: IPython Hints

www.it-ebooks.info

http://ipython.org/ipython-doc/dev/config/extensions/storemagic.html
http://ipython.org/ipython-doc/dev/config/extensions/storemagic.html
https://ipython.org/ipython-doc/dev/interactive/magics.html#magic-history
https://ipython.org/ipython-doc/dev/interactive/magics.html#magic-history
https://ipython.org/ipython-doc/dev/interactive/magics.html#magic-pdb
https://ipython.org/ipython-doc/dev/interactive/magics.html#magic-pdb
https://ipython.org/ipython-doc/dev/interactive/magics.html#magic-pylab
https://ipython.org/ipython-doc/dev/interactive/magics.html#magic-pylab
https://ipython.org/ipython-doc/dev/interactive/magics.html#magic-save
https://ipython.org/ipython-doc/dev/interactive/magics.html#magic-save
https://ipython.org/ipython-doc/dev/interactive/magics.html#magic-timeit
https://ipython.org/ipython-doc/dev/interactive/magics.html#magic-timeit
http://bit.ly/built-in_magic_cmds
http://www.it-ebooks.info/

APPENDIX G

Using Amazon Web Services

If you want to get set up to use Amazon and the Amazon cloud services for your data
wrangling needs, you’ll first need to get a server set up for your use. We’ll review how
to get your first server up and running here.

We covered some alternatives to AWS in Chapter 10, including DigitalOcean, Her‐
oku, GitHub Pages, and using a hosting provider. Depending on your level of interest
in different deployment and server environments, we encourage you to use several
and see what works best for you.

AWS is popular as a first cloud platform, but it can also be quite confusing. We
wanted to include a walkthrough to help you navigate the process. We can also highly
recommend using DigitalOcean as a start into the cloud; their tutorials and walk‐
throughs are quite helpful.

Spinning Up an AWS Server
To spin up (or “launch”) a server, from the AWS console, select “EC2” under “Com‐
pute” (you’ll need to sign in or create an account to access the console). This will take
to you the EC2 landing page. There, click the “Launch Instance” button.

At this point, you’ll be taken to a walkthrough to set up your instance. Whatever you
select here can be edited, so don’t worry if you don’t know what to choose. This book
provides suggestions to get a server up and running cheaply and quickly, but this
doesn’t mean it will be the solution you need. If you run into an issue such as space,
you may need a larger, and therefore more expensive, setting/instance.

That said, in the following sections we’ll walk you through our recommendations for
this setup.

469

www.it-ebooks.info

http://bit.ly/digital_ocean_gs
http://bit.ly/digital_ocean_server_setup
http://bit.ly/digital_ocean_server_setup
https://console.aws.amazon.com
https://console.aws.amazon.com/ec2/v2/home
http://www.it-ebooks.info/

AWS Step 1: Choose an Amazon Machine Image (AMI)
A machine image is basically an operating system image (or snapshot). The most
common operating systems are Windows and OS X. However, Linux-based systems
are usually used for servers. We recommend the latest Ubuntu system, which at the
time of writing is “Ubuntu Server 14.04 LTS (HVM), SSD Volume Type - ami-
d05e75b8.”

AWS Step 2: Choose an Instance Type
The instance type is the size of the server you spin up. Select “t2.micro (Free tier eligi‐
ble).” Do not size up until you know you need to, as you will be wasting money. To
learn more about instances, check out the AWS articles on instance types and pricing.

Select “Review and Launch,” which takes you to Step 7.

AWS Step 7: Review Instance Launch
At the top of the page that appears, you will notice a message that says, “Improve your
instances’ security. Your security group, launch-wizard-4, is open to the world.” For
true production instances or instances with sensitive data, doing this is highly recom‐
mended, along with taking other security precautions. Check out the AWS article
“Tips for Securing Your EC2 Instance”.

AWS Extra Question: Select an Existing Key Pair or Create a New One
A key pair is like a set of keys for the server, so the server knows who to let in. Select
“Create a new key pair,” and name it. We have named ours data-wrangling-test, but
you can call it any good name you will recognize. When you are done, download the
key pair in a place where you will be able to find it later.

Lastly, click “Launch Instances.” When the instance launches, you will have an
instance ID provided onscreen.

If you are worried about your server costs, create billing alerts in
your AWS preferences.

Logging into an AWS Server
To log into the server, you need to navigate to the instance in the AWS console to get
more information. From the console, select EC2, then select “1 Running Instances” (if
you have more than one, the number will be larger). You’ll see a list of your servers.

470 | Appendix G: Using Amazon Web Services

www.it-ebooks.info

https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/pricing/
http://bit.ly/securing_ec2_instance
https://console.aws.amazon.com/billing/home?#/preferences
http://www.it-ebooks.info/

Unless you provided one earlier, your server won’t have a name. Give your instance a
name by clicking on the blank box in the list. We named ours data-wrangling-test for
consistency.

To log into our server, we are going to follow the instructions in the AWS article
about connecting to a Linux instance.

Get the Public DNS Name of the Instance
The public DNS name is the web address of your instance. If you have a value there
that looks like a web address, continue to the next section. If the value is “--”, then you
need to follow these additional steps (from StackOverflow):

1. Go to console.aws.amazon.com.
2. Go to Services (top nav) → VPC (near the end of the list).
3. Open your VPCs (lefthand column).
4. Select the VPC connected to your EC2.
5. From the “Actions” drop-down, select “Edit DNS Hostnames.”
6. Change the setting for “Edit DNS Hostnames” to “Yes.”

If you return to the EC2 instance, you should see it now has a public DNS name.

Prepare Your Private Key
Your private key is the .pem file you downloaded. It’s a good idea to move it to a
folder you know and remember. For Unix-based systems, your keys should be in a
folder in your home folder called .ssh. For Windows, the default is either C:\Docu‐
ments and Settings\<username>\.ssh\ or C:\Users\<username>\.ssh. You should copy
your .pem file to that folder.

Next, you need to run the chmod command to change the .pem permissions to 400.
Changing the permissions to 400 means the file is only accessible to the owner. This
keeps the file secure in a multiaccount computer environment:

chmod 400 .ssh/data-wrangling-test.pem

Log into Your Server
At this point, you have all the pieces you need to log into the server. Run the follow‐
ing command, but replace my-key-pair.pem with the name of your key pair and pub
lic_dns_name with your public web address:

ssh -i ~/.ssh/my-key-pair.pem_ ubuntu@_public_dns_name

For example:

Using Amazon Web Services | 471

www.it-ebooks.info

http://bit.ly/aws_connect_to_linux
http://bit.ly/aws_connect_to_linux
http://bit.ly/ec2_no_public_dns
http://www.it-ebooks.info/

ssh -i data-wrangling-test.pem ubuntu@ec2-12-34-56-128.compute-1.amazonaws.com

When prompted with Are you sure you want to continue connecting (yes/no)? type in
yes.

At this point, your prompt will change slightly, showing you are in the console of the
server you set up. You can now continue getting your server set up by getting your
code onto the server and setting up automation to run on your machine. You can
read more about deploying code to your new server in Chapter 14.

To exit your server, type Ctrl-C or Cmd-C.

Summary
Now you have your first AWS server up and running. Use the lessons learned in
Chapter 14 to deploy code to your server and run your data wrangling in no time!

472 | Appendix G: Using Amazon Web Services

www.it-ebooks.info

http://www.it-ebooks.info/

Index

Symbols
$ (Mac/Linux prompt), 12
%logstart command, 150
%save, 150
.bashrc, 446
.gitignore files, 211
.pem file, 471
=, 454-457
==, 67, 454-457
> (Windows prompt), 12
>>> (Python prompt), 12
\ (escape), 96

A
ActionChains, 324
addition, 32
Africa, data sources from, 133
agate library, 216-240
aggregate method, 238
Airbrake, 410
Amazon Machine Image (AMI), 470
Ansible, 399
APIs (application programming interfaces),

357-371
advanced data collection from Twitter's

REST API, 364-367
advanced data collection from Twitter's

streaming API, 368-370
challenges/benefits of using, 136
features, 358-362
keys and tokens, 360-362
rate limits, 358
REST vs. streaming, 358

simple data pull from Twitter's REST API,
362-364

tiered data volumes, 359
arguments, 47, 102
Asia, data sources from, 134
Atom, 15
Atom Shell commands, 428
attrib method, 63
audience, identifying, 248
autocompletion, Tab key for, 97
automation, 373-413

basic steps for, 375-377
command-line arguments for, 384
config files for, 381-384
distributed processing for, 392
email, 403-406
errors and issues, 377-378
large-scale, 397-400
local files, 380-381
logging, 401-403
logging as a service, 409
messaging, 403-409
monitoring of, 400-411
of operations with Ansible, 399
parallel processing for, 389-391
Python logging, 401-403
questions to clarify process, 375
queue-based (Celery), 398-399
reasons for, 373-375
script location, 378
sharing code with Jupyter notebooks, 397
simple, 393-397
special tools for, 379-393
uploading, 409

473

www.it-ebooks.info

http://www.it-ebooks.info/

using cloud for data processing, 386-389
when not to automate, 411
with cron, 393-396
with web interfaces, 396

AWS (Amazon Web Services), 386, 396,
469-472
Amazon Machine Image, 470
launching a server, 469
logging into a server, 470-472

B
backup strategies, 141
bad data, 167-173
bar chart, 250
bash, 425-432

commands, 433-437
executing files, 429
modifying files, 427-429
navigation from command line, 426
online resources, 432
searching with command line, 431-432

Beautiful Soup, 296-300
beginners, Python resources for, xiii, 5, 423
best practices, 197
bias, 247
binary mode, 47
blocks, indented, 48
blogs, 266
Bokeh, 254-257
Booleans, 19
Boston Python, 424
Bottle, 396
browser-based parsing, 313-331

screen reading with Ghost.py, 325-331
screen reading with Selenium, 314-325

built-in functions/methods, 459
built-in tools, 34-38

C
C++, Python vs., 419
C, Python vs., 419
calling variables, 24
Canada, data sources from, 134
capitalization, 50-52
case sensitivity, 50-52
cat command, 431
cd command, 14, 50, 97, 427
Celery, 398-399
Central Asia, data sources from, 134

charts/charting, 250-257
with Bokeh, 254-257
with matplotlib, 251-254

chat, automated messaging with, 406
chdir command, 433
chmod command, 430, 471
chown command, 430
cloud

data storage, 147
for data processing automation, 386-389
using Git to deploy Python, 387-389

cmd, 432-437
code

length of well-formatted lines, 106
saving to a file, 49
sharing with Jupyter, 268-272
whitespace in, 453

code blocks, indented, 48
code editor, 15
coding best practices, 197
command line

bash-based, 425-432
making a file executable via, 205
navigation via, 425-437
running CSV data files from command line,

50-52
Windows CMD/PowerShell, 432-437

command-line arguments, automation with,
384

command-line shortcuts, 442
commands, 425-437

cat, 431
cd, 14, 50, 97, 427
chdir, 433
chmod, 430, 471
chown, 430
cp, 428
del, 434
dir, 35-36, 433, 436
echo, 434-432
find, 61, 432
history, 428, 432
if and fi, 442
ls, 50, 426-429, 440
make and make install, 430
move, 434
pwd, 14, 50, 426, 429
rm, 429
sudo, 14, 430

474 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

touch, 427
unzip, 431, 436
wget, 430

comments, 88
communications officials, 131
comparison operators, 454-457
config files, 381-384
containers, 276
copy method, 456
copyrights, 276
correlations, 232
counters, 81
cp command, 428
Crawl Spider, 334
cron, 393-396
crowdsourced data, 136
CSS (Cascading Style Sheets), 289-291, 304-311
CSV data, 44-52

importing, 46
running files from command line, 50-52
saving code to a file, 49

csv library, 46
cursor (class name), 365

D
data

CSV, 44-52
Excel, 73-90
formatting, 162-167
importing, 216-222
JSON, 52-55
machine-readable, 43-71
manual cleanup exercise, 121
from PDFs, 91-126
publishing, 264-272
saving, 192-195
XML, 55-70

data acquisition, 127-140
and fact checking, 128
case studies, 137-140
checking for readability, cleanliness, and

longevity, 129
determining quality of data, 128
from US government, 132
locating sources for, 130-137
locating via telephone, 130
smell test for new data, 128

data analysis, 241-244
documenting conclusions, 245

drawing conclusions, 244
improving your skills, 416
searching for trends/patterns, 244
separating/focusing data, 242-243

data checking
manual cleanup exercise, 121
manual vs. automated, 109

data cleanup, 149-189
basics, 150-189
determining right type of, 195
finding duplicates, 173-187
finding outliers/bad data, 167-173
fuzzy matching, 177-181
identifying values for, 151-162
normalizing, 191-192
reasons for, 149-189
regex matching, 181-186
replacing headers, 152-155
saving cleaned data, 192-195
scripting, 196-212
standardizing, 191-192
testing with new data, 212
working with duplicate records, 186-187
zip method, 155-162

data containers, 23-28
dictionaries, 27
lists, 25-27
variables, 23-25

data exploration, 215-245
creating groupings, 235-240
identifying correlations, 232
identifying outliers, 233-235
importing data for, 216-222
joining datasets, 227-232
statistical libraries for, 240

data presentation, 247-273
avoiding storytelling pitfalls, 247-250
charts, 250-257
images, 263
interactives, 262
maps, 258-262
publishing your data, 264-272
time-related data, 257
tools for, 264
video, 263
visualization, 250-264
with illustrations, 263
with Jupyter, 268-272
with words, 263

Index | 475

www.it-ebooks.info

http://www.it-ebooks.info/

data processing, cloud-based, 386-389
data storage, 140-148

alternative approaches, 147
cloud storage, 147
in databases, 141-146
in simple files, 146
local storage, 147
locations for, 140

data types, 18-22
and methods, 28-34
capabilities of, 28-34
decimals, 21
dictionary methods, 33
floats, 20
integers, 19
list methods, 32
non-whole number types, 20-22
numerical methods, 31
string methods, 30
strings, 18

data wrangling
defined, xii
duties of wranglers, 415

databases, 141-146
MongoDB, 145
MySQL, 141-143
nonrelational, 144-146
NoSQL, 144
PostgreSQL, 143
relational, 141-144
setting up local database with Python,

145-146
SQL, 142-143
SQLite, 145-146

Datadog, 410
Dataset (wrapper library), 145
datasets

finding, 3
joining, 227-232
standardizing, 191-192

datetime module, 164
debugging, 13, 461
decimal module, 21
decimals, 21
default function arguments, 457
default values, arguments with, 102
del command, 434
delimiters, 38
deprecation, 60

dictionaries, 27
dictionary methods, 33
dictionary values method, 154
DigitalOcean, 396
dir command, 35-36, 433, 436
directory, for project-related content, 445
distributed processing, 392
Django, 396
DNS name, public, 471
documentation

for script, 198-209
of conclusions, 245

DOM (Document Object Model), 282
Dropbox, 147
duplicate records, 173-177

finding, 173-177
fuzzy matching, 177-181
regex matching, 181-186
working with, 186-187

E
echo command, 434-432
Element objects, 61
ElementTree, 57
Emacs, 15
email, automation of, 403-406
emojis, 303
enumerate function, 158
errors, 228
escaping characters (\), 96
etree objects, 301
European Union, data sources from, 133
Excel

installing Python packages for working
with, 73

parsing files, 75-89
Python vs., 4
working with files, 73-90

except block, 228, 229
exception handling, 228

and logging, 410
catching multiple exceptions, 461

exception method, 402
extract method, 181

F
Fabric, 397
Facebook chat, 408
fact checking, 128

476 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

files
opening from different locations, 49
saving code to, 49
uncommon types, 124

find command, 61, 432
findall method, 61, 183
Flask, 396
floats, 20
FOIA (Freedom of Information Act) requests,

132
folders, 44
for loops, 47

and counters, 81
closing, 48
nested, 80

format method, 162
formatting data, 162-167
Freedom of Information Act (FOIA) requests,

132
functions, 47

built-in, 459
default arguments, 457
magic, 466-468
writing, 101

fuzzy matching, 177-181

G
GCC (GNU Compiler Collection), 439
get_config function, 405
get_tables function, 117, 229
Ghost, 267
Ghost.py, 325-331
GhostDriver, 324
GIL (Global Interpreter Lock), 454
Git, 211, 387-389
GitHub Pages, 267
global private variables, 205
Google API, 357
Google Chat, 408
Google Drive, 147
Google Slides, 264
government data

from foreign governments, 133
from US, 132

groupings, creating, 235-240

H
Hadoop, 147
Haiku Deck, 264

hashable values, 174
HDF (Hierarchical Data Format), 147
headers

replacing, 152-155
zip method for cleanup, 155-162

headless browsers
and Ghost.py, 328
and Selenium, 324

help method, 37
Heroku, 268, 396
Hexo, 268
Hierarchical Data Format (HDF), 147
HipChat, 407
HipLogging, 408
history command, 428, 432
Homebrew

finding Homebrew, 440-443
installation, 440
telling system where to find, 440-443

HTML, Python vs., 420
HypChat, 407

I
if and fi commands, 442
if not statements, 169
if statements, 67
if-else statements, 67
illustrations (visual data presentation), 263
images, 263
immutable objects, 460
implicitly_wait method, 322
import errors, 14
import statements, 58
importing data, 216-222
in method, 154
indented code blocks, closing, 48
index method, 158
indexing

defined, 83
for Excel files, 83
lists, 66

India, data sources from, 134
inheritance, 333-333
innerHTML attribute, 320
installation (see setup)
instance type, AWS, 470
integers, 19
interactives, 262
internal methods, 35

Index | 477

www.it-ebooks.info

http://www.it-ebooks.info/

IPython, 465-468
(see also Jupyter)
installing, 16, 466
magic functions, 466-468
reasons for using, 465

is (comparison operator), 455
iterators, 217
itersiblings method, 304

J
Java, Python vs., 419
JavaScript console

and web page analysis, 289-293
jQuery and, 291-293
style basics, 289-291

JavaScript, Python vs., 420
Jekyll, 267
join method, 230
jQuery, 291-293
JSON data, 52-55
Jupyter, 268-272

(see also IPython)
shared notebooks, 271
sharing automation code with, 397
sharing data presentation code with,

268-272

K
key pair, AWS, 470
keys

API, 360-362
in Python dictionary, 27

L
lambda function, 224
latency, 353
legal issues, 276
libraries (packages), 465

(see also specific libraries, e.g.: xlutils
library)

defined, 46
for working with Excel files, 73, 75
math, 22
statistical, 240

line chart, 250
LinkedIn API, 357
Linux

installing Python on, 7

learning about new environment, 448-451
virtual environment testing, 447
virtualenv installation, 444
virtualenvwrapper installation, 446

list generators, 152
list indexes, 66
list methods, 32
lists, 25-27

and addition, 32
indexing, 66, 83

local files, automation with, 380-381
logging

and exceptions, 410
and monitoring, 410
as a service, 409
for automation monitoring, 401-403

logging module, 402
Loggly, 410
Logstash, 410
ls command, 50, 426-429, 440
Luigi, 397
LXML

and XPath, 304-311
features, 311
installing, 301
reading web pages with, 300-311

M
Mac OS X

Homebrew installation, 440
installing Python on, 8
learning about new environment, 448-451
Python 2.7 installation, 443
telling system where to find Homebrew,

440-443
virtual environment testing, 447
virtualenv installation, 444
virtualenvwrapper installation, 446

Mac prompt ($), 12
machine-readable data, 43-71

CSV data, 44-52
file formats for, 43
JSON data, 52-55
XML data, 55-70

magic commands, 150
magic functions, 466-468
main function, 204
make and make install commands, 430
markup patterns, 304-311

478 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

match method (regex library), 183
math libraries, 22
MATLAB, Python vs., 420
matplotlib, 251-254
medical datasets, 136
Medium.com, 265
Meetup (website), 424
messaging, automation of, 403-409
methods, 47

built-in, 459
dictionary, 33
list, 32
numerical, 31
string, 30

Middle East, data sources from, 134
modules (term), 21
MongoDB, 145
monitoring, logging and, 410
move command, 434
moving files, 434
MySQL, 141-143

N
NA responses, 169
nested for loop, 80
Network tabs, 286-288
networks, Internet, 351-354
New Relic, 410
newline characters, 99
Node.js, Python vs., 420
non-governmental organizations (NGOs),

datasets from, 135
nonrelational databases, 144-146
nose, 213
NoSQL, 144
numbers, 19, 22
numpy library, 175, 240

O
object-oriented programming (OOP), 23
objects

changing immutable, 460
defining vs. modifying, 459

Observation elements, 61
Octopress, 268
OOP (object-oriented programming), 23
open function, 47
operations automation, 399
organizations, data from, 135

outliers
in data cleanup, 167-173
in data exploration, 233-235

P
packages (see libraries)
parallel processing, 389-391
pdfminer, 97-114
PDFs, 91-126

converting to text, 96
opening/reading with slate, 93-96
parsing tools, 92
parsing with pdfminer, 97-114
parsing with Tabula, 122-124
problem-solving exercises, 115-124
programmatic approaches to parsing, 92-97
table extraction exercise, 116-121
things to consider before using data from,

91
Pelican, 268
PhantomJS, 324
pip, 14, 74
PostgreSQL, 143
PowerShell, 435-437

online resources, 437
searching with, 435-437

Prezi, 264
private key, AWS, 471
private methods, 35
process module, 180
prompt, Python vs. system, 12
public DNS name, 471
publishing data, 264-272

creating a site for, 266
on Medium, 265
on pre-existing sites, 265-266
on Squarespace, 265
on WordPress, 265
on your own blog, 266
one-click deploys for, 268
open source platforms for, 266
with Ghost, 267
with GitHub Pages, 267
with Jekyll, 267
with Jupyter, 268-272

pwd command, 14, 50, 426, 429
PyData, 424
pygal, 260
pylab charts, 253

Index | 479

www.it-ebooks.info

http://www.it-ebooks.info/

PyLadies, 423
PyPI, 74
pyplot, 253
pytest, 213
Python

advanced setup, 439-451
basics, 17-41
beginner's resources, xiii, 5, 423
choosing version of, 6
getting started with, 5-16
idiosyncrasies, 453-463
installation, 443
launching, 18
reasons for using, xi, 4
setup, 7-11
test driving, 11-14
version 2.7 vs. 3.4, 6

Python prompt (>>>), system prompt vs., 12

Q
queue-based automation, 398-399
quote_plus method, 295

R
R, Python vs., 420
range() function, 78
rate limits, 358
ratio function, 178
Read the Docs (website), 423
read-only files, 47
reader function, 54
regular expressions (regex), 96, 181-186
relational databases, 141-144
remove method, 156
removing files, 435
renaming files, 434
reports, automated uploading of, 409
requests, web page, 294-296
REST APIs

advanced data collection from Twitter's,
364-367

simple data pull from Twitter's, 362-364
streaming APIs vs., 358

return statement, 102
rm command, 429
robots.txt file, 293, 355
Rollbar, 410
round-trip latency, 353
Ruby/Ruby on Rails, Python vs., 421

Russia, data sources from, 134

S
SaltStack, 397
scatter charts, 254
scatter method, 254
scientific datasets, 136
scope, 458
Scrapely, 342
Scrapy, 332-351

building a spider with, 332-341
crawl rules, 348-350
crawling entire websites with, 341-351
retry middleware, 351

screen reading, 313
scripting

and network problems, 351-354
data cleanup, 196-212
documentation for, 198-209

search method, 183
Selenium

and headless browsers, 324
refreshing content with, 351
screen reading with, 314-325

Selenium ActionChains, 324
Sentry, 410
separators, 38
setup

advanced, 439-451
code editor, 15
directory for project-related content, 445
GCC installation, 439
Homebrew, 440-443
IPython, 16, 466
learning about new environment, 448-451
libraries (packages), 443
Mac, 8
pip, 14
Python, 7-11, 443
Python 2.7 installation, 443
sudo, 14
virtual environment testing, 447
virtualenv installation, 444
virtualenvwrapper installation, 445
virtualenvwrapper-win installation, 447
Windows, 7, 9-11

set_field_value method, 327
shortcuts, command-line, 442
slate library, 93-96

480 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

SleekXMPP, 408
slicing, 84
smell test, 128
SMS automation, 406
South America, data sources from, 134
Spark, 393
Spider class, 334
spiders, 331-351

building with Scrapy, 332-341
crawling entire websites with Scrapy,

341-351
defined, 277

SQLite, 145-146
Squarespace, 265
Stack Overflow (website), 423
stacked chart, 250
startproject command, 335
statistical libraries, 240
storytelling

audience considerations, 248
avoiding pitfalls, 247-250
data-wrangling as, 1-4
deciding what story to tell, 248
improving your skills, 417

streaming APIs
advanced data collection from Twitter's,

368-370
REST APIs vs., 358

strftime method, 167
string methods, 30
strings

and addition, 32
data types, 18
format method, 162
storing numbers as, 19

strip method, 29
strptime method, 164
Sublime Text, 15
subtraction, 32
sudo command, 14, 430
syntax errors, 14
sys module, 385
system prompt, Python prompt vs., 12

T
Tab key, autocompletion with, 97
table extraction exercise, 116-121
table functions (agate), 223-226
table joins, 230

Tabula, 122-124
tag attributes, 56, 304
tags, 55
target audience, identifying, 248
telephone messages, automating, 406
telephone, locating data via, 130
terminal development

closing indented code blocks, 48
IPython, 468

text messages, automation for, 406
text, converting PDFs to, 96
time series data, 258
time-related data, 257
timeline data, 258
Timeline tabs, 286-288
token, API, 360-362
tools

built-in, 34-38
dir, 35-36
help, 37
type, 34

touch command, 427
trademarks, 276
try block, 228
TSV, 44
tuples, 112
Twillo, 406
Twitter, 1

advanced data collection from REST API,
364-367

advanced data collection from streaming
API, 368-370

creating API key/access token for, 360-362
simple data pull from REST API, 362-364

type checking, 461
type method, 34

U
United Kingdom, data sources from, 133
unittest, 213
universities, datasets from, 135
unsupported code, 121
unzip command, 431, 436
upper method, 30

V
Vagrant, 397
values, Python dictionary, 27
variables, 23-25, 461

Index | 481

www.it-ebooks.info

http://www.it-ebooks.info/

version (Python), choosing, 6
Vi, 15
video, 263
Vim, 15
virtual environment

learning about, 448-451
testing, 447

virtualenv, 444
virtualenvwrapper

installation, 445
updating .bashrc, 446

virtualenvwrapper-win, 447
visualization of data, 250-264

charts, 250-257
images, 263
interactives, 262
maps, 258-262
time-related data, 257
video, 263
with illustrations, 263
with words, 263

voice message automation, 406

W
web interfaces, 396
web page analysis, 278-294

and JavaScript console, 289-293
in-depth, 293
inspection of markup structure, 278-286
Timeline/Network tab analysis, 286-288

web pages
reading with Beautiful Soup, 296-300
reading with LXML, 300-311
requests, 294-296

web scraping
advanced techniques, 313-354
and network problems, 351-354
basics, 275-312
browser-based parsing, 313-331
ethical issues, 354
legal issues, 276, 354
reading web pages with Beautiful Soup,

296-300

reading web pages with LXML, 300-311
screen reading with Ghost.py, 325-331
screen reading with Selenium, 314-325
simple text scraping, 276-278
web page analysis, 278-294
web page requests, 294-296
with Scrapy, 332-351
with spiders, 331-351
with XPath, 304-311

wget command, 430
where function, 224
whitespace, 38, 50-52, 453
Windows

installing Python on, 7, 9-11
learning about new environment, 448-451
virtual environment testing, 447
virtualenv installation, 444
virtualenvwrapper-win installation, 447

Windows 8, 9-11
Windows command line, 432-437

executing files from, 435
modifying files from, 434
navigation, 433
online resources, 437
searching with, 435-437

Windows PowerShell, 435-437
Windows prompt (>), 12
WordPress, 265
wrapper libraries, 145

X
xlrd library, 75-79
xlutils library, 75
xlwt library, 75
XML data, 55-70
XPath, 304-311

Z
Zen of Python, 196
zip function, 105
zip method, for data cleanup, 155-162

482 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

About the Authors
Jacqueline Kazil is a data lover. In her career, she has worked in technology focusing
in finance, government, and journalism. Most notably, she is a former Presidential
Innovation Fellow and cofounded a technology organization in government called
18F. Her career has consisted of many data science and wrangling projects including
Geoq, an open source mapping workflow tool; a Congress.gov remake; and Top
Secret America. She is active in Python and data communities—Python Software
Foundation, PyLadies, Women Data Science DC, and more. She teaches Python in
Washington, D.C. at meetups, conferences, and mini bootcamps. She often pairs pro‐
grams with her sidekick, Ellie (@ellie_the_brave). You can find her on Twitter @jack‐
iekazil or follow her blog, The coderSnorts.

Katharine Jarmul is a Python developer who enjoys data analysis and acquisition,
web scraping, teaching Python, and all things Unix. She worked at small and large
startups before starting her consulting career overseas. Originally from Los Angeles,
she learned Python while working at The Washington Post in 2008. As one of the
founders of PyLadies, Katharine hopes to promote diversity in Python and other
open source languages through education and training. She has led numerous work‐
shops and tutorials ranging from beginner to advanced topics in Python. For more
information on upcoming trainings, reach out to her on Twitter (@kjam) or her web‐
site.

Colophon
The animal on the cover of Data Wrangling with Python is a blue-lipped tree lizard
(Plica umbra). Members of the Plica genus are of moderate size and, though they
belong to a family commonly known as neotropical ground lizards, live mainly in
trees in South America and the Caribbean. Blue-lipped tree lizards predominantly
consume ants and are the only species in their genus not characterized by bunches of
spines on the neck.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world. To learn more about how you can help, go to animals.oreilly.com.

The cover image is from Lydekker’s Natural History. The cover fonts are URW Type‐
writer and Guardian Sans. The text font is Adobe Minion Pro; the heading font is
Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

www.it-ebooks.info

https://www.whitehouse.gov/innovationfellows
https://www.whitehouse.gov/innovationfellows
https://18f.gsa.gov/
https://geo-q.com/geoq/
https://www.congress.gov/
http://projects.washingtonpost.com/top-secret-america/
http://projects.washingtonpost.com/top-secret-america/
https://www.python.org/psf/
https://www.python.org/psf/
http://www.pyladies.com/
http://www.meetup.com/WomenDataScientistsDC/
https://twitter.com/ellie_the_brave
https://twitter.com/jackiekazil
https://twitter.com/jackiekazil
https://medium.com/coder-snorts
http://twitter.com/kjam
http://kjamistan.com
http://kjamistan.com
http://animals.oreilly.com
http://www.it-ebooks.info/

	Copyright
	Table of Contents
	Preface
	Who Should Read This Book
	Who Should Not Read This Book
	How This Book Is Organized
	What Is Data Wrangling?
	What to Do If You Get Stuck
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Introduction to Python
	Why Python
	Getting Started with Python
	Which Python Version
	Setting Up Python on Your Machine
	Test Driving Python
	Install pip
	Install a Code Editor
	Optional: Install IPython

	Summary

	Chapter 2. Python Basics
	Basic Data Types
	Strings
	Integers and Floats

	Data Containers
	Variables
	Lists
	Dictionaries

	What Can the Various Data Types Do?
	String Methods: Things Strings Can Do
	Numerical Methods: Things Numbers Can Do
	List Methods: Things Lists Can Do
	Dictionary Methods: Things Dictionaries Can Do

	Helpful Tools: type, dir, and help
	type
	dir
	help

	Putting It All Together
	What Does It All Mean?
	Summary

	Chapter 3. Data Meant to Be Read by Machines
	CSV Data
	How to Import CSV Data
	Saving the Code to a File; Running from Command Line

	JSON Data
	How to Import JSON Data

	XML Data
	How to Import XML Data

	Summary

	Chapter 4. Working with Excel Files
	Installing Python Packages
	Parsing Excel Files
	Getting Started with Parsing
	Summary

	Chapter 5. PDFs and Problem Solving in Python
	Avoid Using PDFs!
	Programmatic Approaches to PDF Parsing
	Opening and Reading Using slate
	Converting PDF to Text

	Parsing PDFs Using pdfminer
	Learning How to Solve Problems
	Exercise: Use Table Extraction, Try a Different Library
	Exercise: Clean the Data Manually
	Exercise: Try Another Tool

	Uncommon File Types
	Summary

	Chapter 6. Acquiring and Storing Data
	Not All Data Is Created Equal
	Fact Checking
	Readability, Cleanliness, and Longevity
	Where to Find Data
	Using a Telephone
	US Government Data
	Government and Civic Open Data Worldwide
	Organization and Non-Government Organization (NGO) Data
	Education and University Data
	Medical and Scientific Data
	Crowdsourced Data and APIs

	Case Studies: Example Data Investigation
	Ebola Crisis
	Train Safety
	Football Salaries
	Child Labor

	Storing Your Data: When, Why, and How?
	Databases: A Brief Introduction
	Relational Databases: MySQL and PostgreSQL
	Non-Relational Databases: NoSQL
	Setting Up Your Local Database with Python

	When to Use a Simple File
	Cloud-Storage and Python
	Local Storage and Python

	Alternative Data Storage
	Summary

	Chapter 7. Data Cleanup: Investigation, Matching, and Formatting
	Why Clean Data?
	Data Cleanup Basics
	Identifying Values for Data Cleanup
	Formatting Data
	Finding Outliers and Bad Data
	Finding Duplicates
	Fuzzy Matching
	RegEx Matching
	What to Do with Duplicate Records

	Summary

	Chapter 8. Data Cleanup: Standardizing and Scripting
	Normalizing and Standardizing Your Data
	Saving Your Data
	Determining What Data Cleanup Is Right for Your Project
	Scripting Your Cleanup
	Testing with New Data
	Summary

	Chapter 9. Data Exploration and Analysis
	Exploring Your Data
	Importing Data
	Exploring Table Functions
	Joining Numerous Datasets
	Identifying Correlations
	Identifying Outliers
	Creating Groupings
	Further Exploration

	Analyzing Your Data
	Separating and Focusing Your Data
	What Is Your Data Saying?
	Drawing Conclusions
	Documenting Your Conclusions

	Summary

	Chapter 10. Presenting Your Data
	Avoiding Storytelling Pitfalls
	How Will You Tell the Story?
	Know Your Audience

	Visualizing Your Data
	Charts
	Time-Related Data
	Maps
	Interactives
	Words
	Images, Video, and Illustrations

	Presentation Tools
	Publishing Your Data
	Using Available Sites
	Open Source Platforms: Starting a New Site
	Jupyter (Formerly Known as IPython Notebooks)

	Summary

	Chapter 11. Web Scraping: Acquiring and Storing Data from the Web
	What to Scrape and How
	Analyzing a Web Page
	Inspection: Markup Structure
	Network/Timeline: How the Page Loads
	Console: Interacting with JavaScript
	In-Depth Analysis of a Page

	Getting Pages: How to Request on the Internet
	Reading a Web Page with Beautiful Soup
	Reading a Web Page with LXML
	A Case for XPath

	Summary

	Chapter 12. Advanced Web Scraping: Screen Scrapers and Spiders
	Browser-Based Parsing
	Screen Reading with Selenium
	Screen Reading with Ghost.Py

	Spidering the Web
	Building a Spider with Scrapy
	Crawling Whole Websites with Scrapy

	Networks: How the Internet Works and Why It’s Breaking Your Script
	The Changing Web (or Why Your Script Broke)
	A (Few) Word(s) of Caution
	Summary

	Chapter 13. APIs
	API Features
	REST Versus Streaming APIs
	Rate Limits
	Tiered Data Volumes
	API Keys and Tokens

	A Simple Data Pull from Twitter’s REST API
	Advanced Data Collection from Twitter’s REST API
	Advanced Data Collection from Twitter’s Streaming API
	Summary

	Chapter 14. Automation and Scaling
	Why Automate?
	Steps to Automate
	What Could Go Wrong?
	Where to Automate
	Special Tools for Automation
	Using Local Files, argv, and Config Files
	Using the Cloud for Data Processing
	Using Parallel Processing
	Using Distributed Processing

	Simple Automation
	CronJobs
	Web Interfaces
	Jupyter Notebooks

	Large-Scale Automation
	Celery: Queue-Based Automation
	Ansible: Operations Automation

	Monitoring Your Automation
	Python Logging
	Adding Automated Messaging
	Uploading and Other Reporting
	Logging and Monitoring as a Service

	No System Is Foolproof
	Summary

	Chapter 15. Conclusion
	Duties of a Data Wrangler
	Beyond Data Wrangling
	Become a Better Data Analyst
	Become a Better Developer
	Become a Better Visual Storyteller
	Become a Better Systems Architect

	Where Do You Go from Here?

	Appendix A. Comparison of Languages Mentioned
	C, C++, and Java Versus Python
	R or MATLAB Versus Python
	HTML Versus Python
	JavaScript Versus Python
	Node.js Versus Python
	Ruby and Ruby on Rails Versus Python

	Appendix B. Python Resources for Beginners
	Online Resources
	In-Person Groups

	Appendix C. Learning the Command Line
	Bash
	Navigation
	Modifying Files
	Executing Files
	Searching with the Command Line
	More Resources

	Windows CMD/Power Shell
	Navigation
	Modifying Files
	Executing Files
	Searching with the Command Line
	More Resources

	Appendix D. Advanced Python Setup
	Step 1: Install GCC
	Step 2: (Mac Only) Install Homebrew
	Step 3: (Mac Only) Tell Your System Where to Find Homebrew
	Step 4: Install Python 2.7
	Step 5: Install virtualenv (Windows, Mac, Linux)
	Step 6: Set Up a New Directory
	Step 7: Install virtualenvwrapper
	Installing virtualenvwrapper (Mac and Linux)
	Installing virtualenvwrapper-win (Windows)
	Testing Your Virtual Environment (Windows, Mac, Linux)

	Learning About Our New Environment (Windows, Mac, Linux)
	Advanced Setup Review

	Appendix E. Python Gotchas
	Hail the Whitespace
	The Dreaded GIL
	= Versus == Versus is, and When to Just Copy
	Default Function Arguments
	Python Scope and Built-Ins: The Importance of Variable Names
	Defining Objects Versus Modifying Objects
	Changing Immutable Objects
	Type Checking
	Catching Multiple Exceptions
	The Power of Debugging

	Appendix F. IPython Hints
	Why Use IPython?
	Getting Started with IPython
	Magic Functions
	Final Thoughts: A Simpler Terminal

	Appendix G. Using Amazon Web Services
	Spinning Up an AWS Server
	AWS Step 1: Choose an Amazon Machine Image (AMI)
	AWS Step 2: Choose an Instance Type
	AWS Step 7: Review Instance Launch
	AWS Extra Question: Select an Existing Key Pair or Create a New One

	Logging into an AWS Server
	Get the Public DNS Name of the Instance
	Prepare Your Private Key
	Log into Your Server
	Summary

	Index
	About the Authors

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

